|
| 1 | +/* |
| 2 | + * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one |
| 3 | + * or more contributor license agreements. Licensed under the Elastic License |
| 4 | + * 2.0; you may not use this file except in compliance with the Elastic License |
| 5 | + * 2.0. |
| 6 | + */ |
| 7 | + |
| 8 | +package org.elasticsearch.upgrades; |
| 9 | + |
| 10 | +import com.carrotsearch.randomizedtesting.annotations.ParametersFactory; |
| 11 | + |
| 12 | +import org.apache.lucene.search.join.ScoreMode; |
| 13 | +import org.elasticsearch.Version; |
| 14 | +import org.elasticsearch.action.admin.indices.create.CreateIndexResponse; |
| 15 | +import org.elasticsearch.client.Request; |
| 16 | +import org.elasticsearch.client.RequestOptions; |
| 17 | +import org.elasticsearch.client.Response; |
| 18 | +import org.elasticsearch.common.Strings; |
| 19 | +import org.elasticsearch.common.settings.Settings; |
| 20 | +import org.elasticsearch.index.mapper.InferenceMetadataFieldsMapper; |
| 21 | +import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper; |
| 22 | +import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapperTestUtils; |
| 23 | +import org.elasticsearch.index.query.NestedQueryBuilder; |
| 24 | +import org.elasticsearch.index.query.QueryBuilder; |
| 25 | +import org.elasticsearch.inference.Model; |
| 26 | +import org.elasticsearch.inference.SimilarityMeasure; |
| 27 | +import org.elasticsearch.inference.TaskType; |
| 28 | +import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder; |
| 29 | +import org.elasticsearch.search.vectors.KnnVectorQueryBuilder; |
| 30 | +import org.elasticsearch.test.rest.ObjectPath; |
| 31 | +import org.elasticsearch.xcontent.XContentBuilder; |
| 32 | +import org.elasticsearch.xcontent.XContentFactory; |
| 33 | +import org.elasticsearch.xcontent.XContentType; |
| 34 | +import org.elasticsearch.xpack.core.ml.search.SparseVectorQueryBuilder; |
| 35 | +import org.elasticsearch.xpack.core.ml.search.WeightedToken; |
| 36 | +import org.elasticsearch.xpack.inference.mapper.SemanticTextField; |
| 37 | +import org.elasticsearch.xpack.inference.model.TestModel; |
| 38 | +import org.junit.BeforeClass; |
| 39 | + |
| 40 | +import java.io.IOException; |
| 41 | +import java.util.ArrayList; |
| 42 | +import java.util.Arrays; |
| 43 | +import java.util.HashSet; |
| 44 | +import java.util.List; |
| 45 | +import java.util.Map; |
| 46 | +import java.util.Set; |
| 47 | + |
| 48 | +import static org.elasticsearch.xpack.inference.mapper.SemanticTextFieldMapperTests.addSemanticTextInferenceResults; |
| 49 | +import static org.elasticsearch.xpack.inference.mapper.SemanticTextFieldTests.randomSemanticText; |
| 50 | +import static org.hamcrest.CoreMatchers.equalTo; |
| 51 | +import static org.hamcrest.CoreMatchers.notNullValue; |
| 52 | + |
| 53 | +public class SemanticTextUpgradeIT extends AbstractUpgradeTestCase { |
| 54 | + private static final String INDEX_BASE_NAME = "semantic_text_test_index"; |
| 55 | + private static final String SPARSE_FIELD = "sparse_field"; |
| 56 | + private static final String DENSE_FIELD = "dense_field"; |
| 57 | + private static final Version UPGRADE_FROM_VERSION_PARSED = Version.fromString(UPGRADE_FROM_VERSION); |
| 58 | + |
| 59 | + private static final String DOC_1_ID = "doc_1"; |
| 60 | + private static final String DOC_2_ID = "doc_2"; |
| 61 | + private static final Map<String, List<String>> DOC_VALUES = Map.of( |
| 62 | + DOC_1_ID, |
| 63 | + List.of("a test value", "with multiple test values"), |
| 64 | + DOC_2_ID, |
| 65 | + List.of("another test value") |
| 66 | + ); |
| 67 | + |
| 68 | + private static Model SPARSE_MODEL; |
| 69 | + private static Model DENSE_MODEL; |
| 70 | + |
| 71 | + private final boolean useLegacyFormat; |
| 72 | + |
| 73 | + @BeforeClass |
| 74 | + public static void beforeClass() { |
| 75 | + SPARSE_MODEL = TestModel.createRandomInstance(TaskType.SPARSE_EMBEDDING); |
| 76 | + // Exclude dot product because we are not producing unit length vectors |
| 77 | + DENSE_MODEL = TestModel.createRandomInstance(TaskType.TEXT_EMBEDDING, List.of(SimilarityMeasure.DOT_PRODUCT)); |
| 78 | + } |
| 79 | + |
| 80 | + public SemanticTextUpgradeIT(boolean useLegacyFormat) { |
| 81 | + this.useLegacyFormat = useLegacyFormat; |
| 82 | + } |
| 83 | + |
| 84 | + @ParametersFactory |
| 85 | + public static Iterable<Object[]> parameters() { |
| 86 | + List<Object[]> parameters = new ArrayList<>(); |
| 87 | + parameters.add(new Object[] { true }); |
| 88 | + if (UPGRADE_FROM_VERSION_PARSED.onOrAfter(Version.V_8_18_0)) { |
| 89 | + // New semantic text format added in 8.18 |
| 90 | + parameters.add(new Object[] { false }); |
| 91 | + } |
| 92 | + return parameters; |
| 93 | + } |
| 94 | + |
| 95 | + public void testSemanticTextOperations() throws Exception { |
| 96 | + assumeTrue("Upgrade from version supports semantic text", UPGRADE_FROM_VERSION_PARSED.onOrAfter(Version.V_8_15_0)); |
| 97 | + switch (CLUSTER_TYPE) { |
| 98 | + case OLD -> createAndPopulateIndex(); |
| 99 | + case MIXED, UPGRADED -> performIndexQueryHighlightOps(); |
| 100 | + default -> throw new UnsupportedOperationException("Unknown cluster type [" + CLUSTER_TYPE + "]"); |
| 101 | + } |
| 102 | + } |
| 103 | + |
| 104 | + private void createAndPopulateIndex() throws IOException { |
| 105 | + final String indexName = getIndexName(); |
| 106 | + final String mapping = Strings.format(""" |
| 107 | + { |
| 108 | + "properties": { |
| 109 | + "%s": { |
| 110 | + "type": "semantic_text", |
| 111 | + "inference_id": "%s" |
| 112 | + }, |
| 113 | + "%s": { |
| 114 | + "type": "semantic_text", |
| 115 | + "inference_id": "%s" |
| 116 | + } |
| 117 | + } |
| 118 | + } |
| 119 | + """, SPARSE_FIELD, SPARSE_MODEL.getInferenceEntityId(), DENSE_FIELD, DENSE_MODEL.getInferenceEntityId()); |
| 120 | + |
| 121 | + Settings.Builder settingsBuilder = Settings.builder(); |
| 122 | + if (UPGRADE_FROM_VERSION_PARSED.onOrAfter(Version.V_8_18_0)) { |
| 123 | + settingsBuilder.put(InferenceMetadataFieldsMapper.USE_LEGACY_SEMANTIC_TEXT_FORMAT.getKey(), useLegacyFormat); |
| 124 | + } |
| 125 | + |
| 126 | + CreateIndexResponse response = createIndex(indexName, settingsBuilder.build(), mapping); |
| 127 | + assertThat(response.isAcknowledged(), equalTo(true)); |
| 128 | + |
| 129 | + indexDoc(DOC_1_ID, DOC_VALUES.get(DOC_1_ID)); |
| 130 | + } |
| 131 | + |
| 132 | + private void performIndexQueryHighlightOps() throws IOException { |
| 133 | + indexDoc(DOC_2_ID, DOC_VALUES.get(DOC_2_ID)); |
| 134 | + |
| 135 | + ObjectPath sparseQueryObjectPath = semanticQuery(SPARSE_FIELD, SPARSE_MODEL, "test value", 3); |
| 136 | + assertQueryResponseWithHighlights(sparseQueryObjectPath, SPARSE_FIELD); |
| 137 | + |
| 138 | + ObjectPath denseQueryObjectPath = semanticQuery(DENSE_FIELD, DENSE_MODEL, "test value", 3); |
| 139 | + assertQueryResponseWithHighlights(denseQueryObjectPath, DENSE_FIELD); |
| 140 | + } |
| 141 | + |
| 142 | + private String getIndexName() { |
| 143 | + return INDEX_BASE_NAME + (useLegacyFormat ? "_legacy" : "_new"); |
| 144 | + } |
| 145 | + |
| 146 | + private void indexDoc(String id, List<String> semanticTextFieldValue) throws IOException { |
| 147 | + final String indexName = getIndexName(); |
| 148 | + final SemanticTextField sparseFieldValue = randomSemanticText( |
| 149 | + useLegacyFormat, |
| 150 | + SPARSE_FIELD, |
| 151 | + SPARSE_MODEL, |
| 152 | + null, |
| 153 | + semanticTextFieldValue, |
| 154 | + XContentType.JSON |
| 155 | + ); |
| 156 | + final SemanticTextField denseFieldValue = randomSemanticText( |
| 157 | + useLegacyFormat, |
| 158 | + DENSE_FIELD, |
| 159 | + DENSE_MODEL, |
| 160 | + null, |
| 161 | + semanticTextFieldValue, |
| 162 | + XContentType.JSON |
| 163 | + ); |
| 164 | + |
| 165 | + XContentBuilder builder = XContentFactory.jsonBuilder(); |
| 166 | + builder.startObject(); |
| 167 | + if (useLegacyFormat == false) { |
| 168 | + builder.field(sparseFieldValue.fieldName(), semanticTextFieldValue); |
| 169 | + builder.field(denseFieldValue.fieldName(), semanticTextFieldValue); |
| 170 | + } |
| 171 | + addSemanticTextInferenceResults(useLegacyFormat, builder, List.of(sparseFieldValue, denseFieldValue)); |
| 172 | + builder.endObject(); |
| 173 | + |
| 174 | + RequestOptions requestOptions = RequestOptions.DEFAULT.toBuilder().addParameter("refresh", "true").build(); |
| 175 | + Request request = new Request("POST", indexName + "/_doc/" + id); |
| 176 | + request.setJsonEntity(Strings.toString(builder)); |
| 177 | + request.setOptions(requestOptions); |
| 178 | + |
| 179 | + Response response = client().performRequest(request); |
| 180 | + assertOK(response); |
| 181 | + } |
| 182 | + |
| 183 | + private ObjectPath semanticQuery(String field, Model fieldModel, String query, Integer numOfHighlightFragments) throws IOException { |
| 184 | + // We can't perform a real semantic query because that requires performing inference, so instead we perform an equivalent nested |
| 185 | + // query |
| 186 | + final String embeddingsFieldName = SemanticTextField.getEmbeddingsFieldName(field); |
| 187 | + final QueryBuilder innerQueryBuilder = switch (fieldModel.getTaskType()) { |
| 188 | + case SPARSE_EMBEDDING -> { |
| 189 | + List<WeightedToken> weightedTokens = Arrays.stream(query.split("\\s")).map(t -> new WeightedToken(t, 1.0f)).toList(); |
| 190 | + yield new SparseVectorQueryBuilder(embeddingsFieldName, weightedTokens, null, null, null, null); |
| 191 | + } |
| 192 | + case TEXT_EMBEDDING -> { |
| 193 | + DenseVectorFieldMapper.ElementType elementType = fieldModel.getServiceSettings().elementType(); |
| 194 | + int embeddingLength = DenseVectorFieldMapperTestUtils.getEmbeddingLength( |
| 195 | + elementType, |
| 196 | + fieldModel.getServiceSettings().dimensions() |
| 197 | + ); |
| 198 | + |
| 199 | + // Create a query vector with a value of 1 for each dimension, which will effectively act as a pass-through for the document |
| 200 | + // vector |
| 201 | + float[] queryVector = new float[embeddingLength]; |
| 202 | + if (elementType == DenseVectorFieldMapper.ElementType.BIT) { |
| 203 | + Arrays.fill(queryVector, -128.0f); |
| 204 | + } else { |
| 205 | + Arrays.fill(queryVector, 1.0f); |
| 206 | + } |
| 207 | + |
| 208 | + yield new KnnVectorQueryBuilder(embeddingsFieldName, queryVector, DOC_VALUES.size(), null, null, null); |
| 209 | + } |
| 210 | + default -> throw new UnsupportedOperationException("Unhandled task type [" + fieldModel.getTaskType() + "]"); |
| 211 | + }; |
| 212 | + |
| 213 | + NestedQueryBuilder nestedQueryBuilder = new NestedQueryBuilder( |
| 214 | + SemanticTextField.getChunksFieldName(field), |
| 215 | + innerQueryBuilder, |
| 216 | + ScoreMode.Max |
| 217 | + ); |
| 218 | + |
| 219 | + XContentBuilder builder = XContentFactory.jsonBuilder(); |
| 220 | + builder.startObject(); |
| 221 | + builder.field("query", nestedQueryBuilder); |
| 222 | + if (numOfHighlightFragments != null) { |
| 223 | + HighlightBuilder.Field highlightField = new HighlightBuilder.Field(field); |
| 224 | + highlightField.numOfFragments(numOfHighlightFragments); |
| 225 | + |
| 226 | + HighlightBuilder highlightBuilder = new HighlightBuilder(); |
| 227 | + highlightBuilder.field(highlightField); |
| 228 | + |
| 229 | + builder.field("highlight", highlightBuilder); |
| 230 | + } |
| 231 | + builder.endObject(); |
| 232 | + |
| 233 | + Request request = new Request("GET", getIndexName() + "/_search"); |
| 234 | + request.setJsonEntity(Strings.toString(builder)); |
| 235 | + |
| 236 | + Response response = client().performRequest(request); |
| 237 | + return assertOKAndCreateObjectPath(response); |
| 238 | + } |
| 239 | + |
| 240 | + private static void assertQueryResponseWithHighlights(ObjectPath queryObjectPath, String field) throws IOException { |
| 241 | + assertThat(queryObjectPath.evaluate("hits.total.value"), equalTo(2)); |
| 242 | + assertThat(queryObjectPath.evaluateArraySize("hits.hits"), equalTo(2)); |
| 243 | + |
| 244 | + Set<String> docIds = new HashSet<>(); |
| 245 | + List<Map<String, Object>> hits = queryObjectPath.evaluate("hits.hits"); |
| 246 | + for (Map<String, Object> hit : hits) { |
| 247 | + String id = ObjectPath.evaluate(hit, "_id"); |
| 248 | + assertThat(id, notNullValue()); |
| 249 | + docIds.add(id); |
| 250 | + |
| 251 | + if (UPGRADE_FROM_VERSION_PARSED.onOrAfter(Version.V_8_18_0) || CLUSTER_TYPE == ClusterType.UPGRADED) { |
| 252 | + // Semantic highlighting only functions reliably on clusters where all nodes are 8.18.0 or later |
| 253 | + List<String> expectedHighlight = DOC_VALUES.get(id); |
| 254 | + assertThat(expectedHighlight, notNullValue()); |
| 255 | + assertThat(ObjectPath.evaluate(hit, "highlight." + field), equalTo(expectedHighlight)); |
| 256 | + } |
| 257 | + } |
| 258 | + |
| 259 | + assertThat(docIds, equalTo(Set.of(DOC_1_ID, DOC_2_ID))); |
| 260 | + } |
| 261 | +} |
0 commit comments