|
| 1 | +using LinearAlgebra |
| 2 | +using LinearAlgebra,CUDA |
| 3 | +using ..Common |
| 4 | + |
| 5 | +export squarescale_reftra |
| 6 | + |
| 7 | +function taylorx(dnx,dny,Kx,Ky,λ,l::PatternedLayer) |
| 8 | + k0=2π/real(λ) |
| 9 | + #get the base permittivity |
| 10 | + εxx=get_permittivity(l.materials[1],λ,1)*I |
| 11 | + #add the permittivity for all inclusions |
| 12 | + if minimum([typeof(m)<:Common.Isotropic for m in l.materials]) |
| 13 | + #all isotropic |
| 14 | + εxx=get_permittivity(l.materials[1],λ)*I |
| 15 | + for ct=1:length(l.geometries) |
| 16 | + rec=reciprocal(l.geometries[ct],dnx,dny) |
| 17 | + εxx+=rec*(get_permittivity(l.materials[ct+1],λ)-get_permittivity(l.materials[ct],λ)) |
| 18 | + end |
| 19 | + εzz=εyy=εxx |
| 20 | + εxy=εyx=0I |
| 21 | + else |
| 22 | + #anisotropic |
| 23 | + εxx=get_permittivity(l.materials[1],λ,1)*I |
| 24 | + εxy=get_permittivity(l.materials[1],λ,2)*I |
| 25 | + εyx=get_permittivity(l.materials[1],λ,3)*I |
| 26 | + εyy=get_permittivity(l.materials[1],λ,4)*I |
| 27 | + εzz=get_permittivity(l.materials[1],λ,5)*I |
| 28 | + for ct=1:length(l.geometries) |
| 29 | + rec=reciprocal(l.geometries[ct],dnx,dny) |
| 30 | + εxx+=rec*(get_permittivity(l.materials[ct+1],λ,1)-get_permittivity(l.materials[ct],λ,1)) |
| 31 | + εxy+=rec*(get_permittivity(l.materials[ct+1],λ,2)-get_permittivity(l.materials[ct],λ,2)) |
| 32 | + εyx+=rec*(get_permittivity(l.materials[ct+1],λ,3)-get_permittivity(l.materials[ct],λ,3)) |
| 33 | + εyy+=rec*(get_permittivity(l.materials[ct+1],λ,4)-get_permittivity(l.materials[ct],λ,4)) |
| 34 | + εzz+=rec*(get_permittivity(l.materials[ct+1],λ,5)-get_permittivity(l.materials[ct],λ,5)) |
| 35 | + end |
| 36 | + end |
| 37 | + a01=0 |
| 38 | + a11=-0.10036558103014462001 |
| 39 | + a21=-0.00802924648241156960 |
| 40 | + a31=-0.00089213849804572995 |
| 41 | + |
| 42 | + b01=0 |
| 43 | + b11=0.39784974949964507614 |
| 44 | + b21=1.36783778460411719922 |
| 45 | + b31=0.49828962252538267755 |
| 46 | + b41=-0.00063789819459472330 |
| 47 | + |
| 48 | + b02=-10.9676396052962062593 |
| 49 | + b12=1.68015813878906197182 |
| 50 | + b22=0.05717798464788655127 |
| 51 | + b32=-0.00698210122488052084 |
| 52 | + b42=0.00003349750170860705 |
| 53 | + |
| 54 | + b03=-0.09043168323908105619 |
| 55 | + b13=-0.06764045190713819075 |
| 56 | + b23=0.06759613017704596460 |
| 57 | + b33=0.02955525704293155274 |
| 58 | + b43=-0.00001391802575160607 |
| 59 | + |
| 60 | + b04=0 |
| 61 | + b14=0 |
| 62 | + b24=-0.09233646193671185927 |
| 63 | + b34=-.01693649390020817171 |
| 64 | + b44=-0.00001400867981820361 |
| 65 | + η=inv(εzz) |
| 66 | + P=[Kx*η*Ky I-Kx*η*Kx;Ky*η*Ky-I -Ky*η*Kx] |
| 67 | + Q=[Kx*Ky+εyx εyy-Kx*Kx;Ky*Ky-εxx -εxy-Ky*Kx] |
| 68 | + A0=[0I P;Q 0I]*k0*l.thickness |
| 69 | + nrm=maximum(sum(abs.(A0),dims=1)) |
| 70 | + m=Int(ceil(log2(nrm))) |
| 71 | + A=A0*2.0^-m |
| 72 | + PQ=P*Q |
| 73 | + PQP=PQ*P |
| 74 | + QP=Q*P |
| 75 | + QPQ=QP*Q |
| 76 | + A2=[PQ 0I;0I QP]*(k0*l.thickness*2.0^-m)^2 |
| 77 | + A3=[0I PQP;QP*Q 0I]*(k0*l.thickness*2.0^-m)^3 |
| 78 | + A6=[PQP*QPQ 0I;0I QPQ*PQP]*(k0*l.thickness*2.0^-m)^6 |
| 79 | + #A2=A*A |
| 80 | + #A3=A2*A |
| 81 | + #A6=A3*A3 |
| 82 | + B1=a01*I+a11*A+a21*A2+a31*A3 |
| 83 | + B2=b01*I+b11*A+b21*A2+b31*A3+b41*A6 |
| 84 | + B3=b02*I+b12*A+b22*A2+b32*A3+b42*A6 |
| 85 | + B4=b03*I+b13*A+b23*A2+b33*A3+b43*A6 |
| 86 | + B5=b04*I+b14*A+b24*A2+b34*A3+b44*A6 |
| 87 | + A9=B1*B5+B4 |
| 88 | + X=B2+(B3+A9)*A9 |
| 89 | + return X^(2^m) |
| 90 | +end |
| 91 | +function squarescalex(dnx,dny,Kx,Ky,λ,l::PatternedLayer) |
| 92 | + k0=2π/real(λ) |
| 93 | + #get the base permittivity |
| 94 | + εxx=get_permittivity(l.materials[1],λ,1)*I |
| 95 | + #add the permittivity for all inclusions |
| 96 | + if minimum([typeof(m)<:Common.Isotropic for m in l.materials]) |
| 97 | + #all isotropic |
| 98 | + εxx=get_permittivity(l.materials[1],λ)*I |
| 99 | + for ct=1:length(l.geometries) |
| 100 | + rec=reciprocal(l.geometries[ct],dnx,dny) |
| 101 | + εxx+=rec*(get_permittivity(l.materials[ct+1],λ)-get_permittivity(l.materials[ct],λ)) |
| 102 | + end |
| 103 | + εzz=εyy=εxx |
| 104 | + εxy=εyx=0I |
| 105 | + else |
| 106 | + #anisotropic |
| 107 | + εxx=get_permittivity(l.materials[1],λ,1)*I |
| 108 | + εxy=get_permittivity(l.materials[1],λ,2)*I |
| 109 | + εyx=get_permittivity(l.materials[1],λ,3)*I |
| 110 | + εyy=get_permittivity(l.materials[1],λ,4)*I |
| 111 | + εzz=get_permittivity(l.materials[1],λ,5)*I |
| 112 | + for ct=1:length(l.geometries) |
| 113 | + rec=reciprocal(l.geometries[ct],dnx,dny) |
| 114 | + εxx+=rec*(get_permittivity(l.materials[ct+1],λ,1)-get_permittivity(l.materials[ct],λ,1)) |
| 115 | + εxy+=rec*(get_permittivity(l.materials[ct+1],λ,2)-get_permittivity(l.materials[ct],λ,2)) |
| 116 | + εyx+=rec*(get_permittivity(l.materials[ct+1],λ,3)-get_permittivity(l.materials[ct],λ,3)) |
| 117 | + εyy+=rec*(get_permittivity(l.materials[ct+1],λ,4)-get_permittivity(l.materials[ct],λ,4)) |
| 118 | + εzz+=rec*(get_permittivity(l.materials[ct+1],λ,5)-get_permittivity(l.materials[ct],λ,5)) |
| 119 | + end |
| 120 | + end |
| 121 | + η=inv(εzz) |
| 122 | + P=[Kx*η*Ky I-Kx*η*Kx;Ky*η*Ky-I -Ky*η*Kx] |
| 123 | + Q=[Kx*Ky+εyx εyy-Kx*Kx;Ky*Ky-εxx -εxy-Ky*Kx] |
| 124 | + A0=[0I P;Q 0I]*k0*l.thickness |
| 125 | + nrm=maximum(sum(abs.(A0),dims=1)) |
| 126 | + m=Int(ceil(log2(nrm))) |
| 127 | + m=0 |
| 128 | + A=A0*2.0^-m |
| 129 | + X=exp(A) |
| 130 | + return X^(2^m) |
| 131 | +end |
| 132 | +function taylor_reftra(ψin,m::RCWAModel,grd::RCWAGrid,λ) |
| 133 | + X=[taylorx(grd.dnx,grd.dny,grd.Kx,grd.Ky,λ,l) for l in m.layers] |
| 134 | + Xp=I |
| 135 | + for X in X |
| 136 | + Xp*=X |
| 137 | + end |
| 138 | + ref=halfspace(grd.Kx,grd.Ky,m.εsup,λ) #superstrate and substrate |
| 139 | + tra=halfspace(grd.Kx,grd.Ky,m.εsub,λ) |
| 140 | + Y=Xp*[I;-tra.V] |
| 141 | + S=[Y [-I;-ref.V]]\[I;-ref.V]*ψin |
| 142 | + to,ro=slicehalf(S) |
| 143 | + |
| 144 | + kzin=grd.k0[3]#*real(sqrt(get_permittivity(m.εsup,λ))) |
| 145 | + R=a2p(0ro,ro,ref.V,I,kzin) #compute amplitudes to powers |
| 146 | + T=-a2p(to,0to,tra.V,I,kzin) |
| 147 | + |
| 148 | + return R,T |
| 149 | + |
| 150 | +end |
| 151 | +function squarescale_reftra(ψin,m::RCWAModel,grd::RCWAGrid,λ) |
| 152 | + X=[squarescalex(grd.dnx,grd.dny,grd.Kx,grd.Ky,λ,l) for l in m.layers] |
| 153 | + Xp=I |
| 154 | + for X in X |
| 155 | + Xp*=X |
| 156 | + end |
| 157 | + ref=halfspace(grd.Kx,grd.Ky,m.εsup,λ) #superstrate and substrate |
| 158 | + tra=halfspace(grd.Kx,grd.Ky,m.εsub,λ) |
| 159 | + Y=Xp*[I;-tra.V] |
| 160 | + S=[Y [-I;-ref.V]]\[I;-ref.V]*ψin |
| 161 | + to,ro=slicehalf(S) |
| 162 | + |
| 163 | + kzin=grd.k0[3]#*real(sqrt(get_permittivity(m.εsup,λ))) |
| 164 | + R=a2p(0ro,ro,ref.V,I,kzin) #compute amplitudes to powers |
| 165 | + T=-a2p(to,0to,tra.V,I,kzin) |
| 166 | + |
| 167 | + return R,T |
| 168 | + |
| 169 | +end |
0 commit comments