Skip to content

Commit 3d40b4b

Browse files
Regenerate visualization landscape notebook
1 parent 3c99542 commit 3d40b4b

File tree

1 file changed

+38
-28
lines changed

1 file changed

+38
-28
lines changed

notebooks/visualization_03_landscape.ipynb

Lines changed: 38 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"<p><font size=\"6\"><b>Visualzation - Python's Visualization Landscape</b></font></p>\n",
7+
"<p><font size=\"6\"><b>Visualization - Python's Visualization Landscape</b></font></p>\n",
88
"\n",
99
"> *DS Data manipulation, analysis and visualization in Python* \n",
1010
"> *May/June, 2021*\n",
@@ -31,13 +31,14 @@
3131
"\n",
3232
"To have support of plotly inside the Jupyter Lab environment\n",
3333
"```\n",
34+
"conda install -c conda-forge nodejs\n",
3435
"jupyter labextension install [email protected]\n",
3536
"```\n",
3637
"\n",
3738
"To run the large data set section, additional package installations are required:\n",
3839
"\n",
3940
"```\n",
40-
"conda install -c bokeh datashader holoviews\n",
41+
"conda install -c conda-forge datashader holoviews\n",
4142
"```\n",
4243
"\n",
4344
"To run the 'bokeh-pandas' backend:\n",
@@ -113,7 +114,9 @@
113114
{
114115
"cell_type": "code",
115116
"execution_count": null,
116-
"metadata": {},
117+
"metadata": {
118+
"tags": []
119+
},
117120
"outputs": [],
118121
"source": [
119122
"with plt.style.context('seaborn-whitegrid'): # context manager for styling the figure\n",
@@ -182,40 +185,40 @@
182185
"source": [
183186
"* When your data consists of only **1 categorical variable**, such as\n",
184187
"\n",
185-
"| ID | variable 1 | variable 2 | variabel ... | \n",
186-
"|------------|-------------| ---- | ----- |\n",
187-
"| 1 | 0.2 | 0.8 | ... |\n",
188-
"| 2 | 0.3 | 0.1 | ... |\n",
189-
"| 3 | 0.9 | 0.6 | ... |\n",
190-
"| 4 | 0.1 | 0.7 | ... |\n",
191-
"| ... | ... | ... | ...|\n",
188+
" | ID | variable 1 | variable 2 | variabel ... | \n",
189+
" |------------|-------------| ---- | ----- |\n",
190+
" | 1 | 0.2 | 0.8 | ... |\n",
191+
" | 2 | 0.3 | 0.1 | ... |\n",
192+
" | 3 | 0.9 | 0.6 | ... |\n",
193+
" | 4 | 0.1 | 0.7 | ... |\n",
194+
" | ... | ... | ... | ...|\n",
192195
"\n",
193-
"the added value of using Seaborn approach is LOW. Pandas `.plot()` will probably suffice.\n",
196+
" the added value of using Seaborn approach is LOW. Pandas `.plot()` will probably suffice.\n",
194197
"\n",
195198
"* When working with **timeseries data** from sensors or continuous logging, such as\n",
196199
"\n",
197-
"| datetime | station 1 | station 2 | station ... | \n",
198-
"|------------|-------------| ---- | ----- |\n",
199-
"| 2017-12-20T17:50:46Z | 0.2 | 0.8 | ... |\n",
200-
"| 2017-12-20T17:50:52Z | 0.3 | 0.1 | ... |\n",
201-
"| 2017-12-20T17:51:03Z | 0.9 | 0.6 | ... |\n",
202-
"| 2017-12-20T17:51:40Z | 0.1 | 0.7 | ... |\n",
203-
"| ... | ... | ... | ...|\n",
200+
" | datetime | station 1 | station 2 | station ... | \n",
201+
" |------------|-------------| ---- | ----- |\n",
202+
" | 2017-12-20T17:50:46Z | 0.2 | 0.8 | ... |\n",
203+
" | 2017-12-20T17:50:52Z | 0.3 | 0.1 | ... |\n",
204+
" | 2017-12-20T17:51:03Z | 0.9 | 0.6 | ... |\n",
205+
" | 2017-12-20T17:51:40Z | 0.1 | 0.7 | ... |\n",
206+
" | ... | ... | ... | ...|\n",
204207
"\n",
205-
"the added value of using a grammar of graphics approach is LOW. Pandas `.plot()` will probably suffice.\n",
208+
" the added value of using a grammar of graphics approach is LOW. Pandas `.plot()` will probably suffice.\n",
206209
"\n",
207210
"* When working with different experiments, different conditions, (factorial) **experimental designs**, such as\n",
208211
"\n",
209-
"| ID | origin | addition (ml) | measured_value | \n",
210-
"|----|-----------| ----- | ------ |\n",
211-
"| 1 | Eindhoven | 0.3 | 7.2 |\n",
212-
"| 2 | Eindhoven | 0.6 | 6.7 |\n",
213-
"| 3 | Eindhoven | 0.9 | 5.2 |\n",
214-
"| 4 | Destelbergen | 0.3 | 7.2 |\n",
215-
"| 5 | Destelbergen | 0.6 | 6.8 |\n",
216-
"| ... | ... | ... | ...|\n",
212+
" | ID | origin | addition (ml) | measured_value | \n",
213+
" |----|-----------| ----- | ------ |\n",
214+
" | 1 | Eindhoven | 0.3 | 7.2 |\n",
215+
" | 2 | Eindhoven | 0.6 | 6.7 |\n",
216+
" | 3 | Eindhoven | 0.9 | 5.2 |\n",
217+
" | 4 | Destelbergen | 0.3 | 7.2 |\n",
218+
" | 5 | Destelbergen | 0.6 | 6.8 |\n",
219+
" | ... | ... | ... | ...|\n",
217220
"\n",
218-
"the added value of using Seaborn approach is HIGH. Represent your data [`tidy`](http://www.jeannicholashould.com/tidy-data-in-python.html) to achieve maximal benefit!\n",
221+
" the added value of using Seaborn approach is HIGH. Represent your data [`tidy`](http://www.jeannicholashould.com/tidy-data-in-python.html) to achieve maximal benefit!\n",
219222
"\n",
220223
"* When you want to visualize __distributions__ of data or __regressions__ between variables, the added value of using Seaborn approach is HIGH."
221224
]
@@ -1191,6 +1194,13 @@
11911194
"nbconvert_exporter": "python",
11921195
"pygments_lexer": "ipython3",
11931196
"version": "3.8.10"
1197+
},
1198+
"widgets": {
1199+
"application/vnd.jupyter.widget-state+json": {
1200+
"state": {},
1201+
"version_major": 2,
1202+
"version_minor": 0
1203+
}
11941204
}
11951205
},
11961206
"nbformat": 4,

0 commit comments

Comments
 (0)