|
4 | 4 | "cell_type": "markdown",
|
5 | 5 | "metadata": {},
|
6 | 6 | "source": [
|
7 |
| - "<p><font size=\"6\"><b>Visualzation - Python's Visualization Landscape</b></font></p>\n", |
| 7 | + "<p><font size=\"6\"><b>Visualization - Python's Visualization Landscape</b></font></p>\n", |
8 | 8 | "\n",
|
9 | 9 | "> *DS Data manipulation, analysis and visualization in Python* \n",
|
10 | 10 | "> *May/June, 2021*\n",
|
|
31 | 31 | "\n",
|
32 | 32 | "To have support of plotly inside the Jupyter Lab environment\n",
|
33 | 33 | "```\n",
|
| 34 | + "conda install -c conda-forge nodejs\n", |
34 | 35 | "jupyter labextension install [email protected]\n",
|
35 | 36 | "```\n",
|
36 | 37 | "\n",
|
37 | 38 | "To run the large data set section, additional package installations are required:\n",
|
38 | 39 | "\n",
|
39 | 40 | "```\n",
|
40 |
| - "conda install -c bokeh datashader holoviews\n", |
| 41 | + "conda install -c conda-forge datashader holoviews\n", |
41 | 42 | "```\n",
|
42 | 43 | "\n",
|
43 | 44 | "To run the 'bokeh-pandas' backend:\n",
|
|
113 | 114 | {
|
114 | 115 | "cell_type": "code",
|
115 | 116 | "execution_count": null,
|
116 |
| - "metadata": {}, |
| 117 | + "metadata": { |
| 118 | + "tags": [] |
| 119 | + }, |
117 | 120 | "outputs": [],
|
118 | 121 | "source": [
|
119 | 122 | "with plt.style.context('seaborn-whitegrid'): # context manager for styling the figure\n",
|
|
182 | 185 | "source": [
|
183 | 186 | "* When your data consists of only **1 categorical variable**, such as\n",
|
184 | 187 | "\n",
|
185 |
| - "| ID | variable 1 | variable 2 | variabel ... | \n", |
186 |
| - "|------------|-------------| ---- | ----- |\n", |
187 |
| - "| 1 | 0.2 | 0.8 | ... |\n", |
188 |
| - "| 2 | 0.3 | 0.1 | ... |\n", |
189 |
| - "| 3 | 0.9 | 0.6 | ... |\n", |
190 |
| - "| 4 | 0.1 | 0.7 | ... |\n", |
191 |
| - "| ... | ... | ... | ...|\n", |
| 188 | + " | ID | variable 1 | variable 2 | variabel ... | \n", |
| 189 | + " |------------|-------------| ---- | ----- |\n", |
| 190 | + " | 1 | 0.2 | 0.8 | ... |\n", |
| 191 | + " | 2 | 0.3 | 0.1 | ... |\n", |
| 192 | + " | 3 | 0.9 | 0.6 | ... |\n", |
| 193 | + " | 4 | 0.1 | 0.7 | ... |\n", |
| 194 | + " | ... | ... | ... | ...|\n", |
192 | 195 | "\n",
|
193 |
| - "the added value of using Seaborn approach is LOW. Pandas `.plot()` will probably suffice.\n", |
| 196 | + " the added value of using Seaborn approach is LOW. Pandas `.plot()` will probably suffice.\n", |
194 | 197 | "\n",
|
195 | 198 | "* When working with **timeseries data** from sensors or continuous logging, such as\n",
|
196 | 199 | "\n",
|
197 |
| - "| datetime | station 1 | station 2 | station ... | \n", |
198 |
| - "|------------|-------------| ---- | ----- |\n", |
199 |
| - "| 2017-12-20T17:50:46Z | 0.2 | 0.8 | ... |\n", |
200 |
| - "| 2017-12-20T17:50:52Z | 0.3 | 0.1 | ... |\n", |
201 |
| - "| 2017-12-20T17:51:03Z | 0.9 | 0.6 | ... |\n", |
202 |
| - "| 2017-12-20T17:51:40Z | 0.1 | 0.7 | ... |\n", |
203 |
| - "| ... | ... | ... | ...|\n", |
| 200 | + " | datetime | station 1 | station 2 | station ... | \n", |
| 201 | + " |------------|-------------| ---- | ----- |\n", |
| 202 | + " | 2017-12-20T17:50:46Z | 0.2 | 0.8 | ... |\n", |
| 203 | + " | 2017-12-20T17:50:52Z | 0.3 | 0.1 | ... |\n", |
| 204 | + " | 2017-12-20T17:51:03Z | 0.9 | 0.6 | ... |\n", |
| 205 | + " | 2017-12-20T17:51:40Z | 0.1 | 0.7 | ... |\n", |
| 206 | + " | ... | ... | ... | ...|\n", |
204 | 207 | "\n",
|
205 |
| - "the added value of using a grammar of graphics approach is LOW. Pandas `.plot()` will probably suffice.\n", |
| 208 | + " the added value of using a grammar of graphics approach is LOW. Pandas `.plot()` will probably suffice.\n", |
206 | 209 | "\n",
|
207 | 210 | "* When working with different experiments, different conditions, (factorial) **experimental designs**, such as\n",
|
208 | 211 | "\n",
|
209 |
| - "| ID | origin | addition (ml) | measured_value | \n", |
210 |
| - "|----|-----------| ----- | ------ |\n", |
211 |
| - "| 1 | Eindhoven | 0.3 | 7.2 |\n", |
212 |
| - "| 2 | Eindhoven | 0.6 | 6.7 |\n", |
213 |
| - "| 3 | Eindhoven | 0.9 | 5.2 |\n", |
214 |
| - "| 4 | Destelbergen | 0.3 | 7.2 |\n", |
215 |
| - "| 5 | Destelbergen | 0.6 | 6.8 |\n", |
216 |
| - "| ... | ... | ... | ...|\n", |
| 212 | + " | ID | origin | addition (ml) | measured_value | \n", |
| 213 | + " |----|-----------| ----- | ------ |\n", |
| 214 | + " | 1 | Eindhoven | 0.3 | 7.2 |\n", |
| 215 | + " | 2 | Eindhoven | 0.6 | 6.7 |\n", |
| 216 | + " | 3 | Eindhoven | 0.9 | 5.2 |\n", |
| 217 | + " | 4 | Destelbergen | 0.3 | 7.2 |\n", |
| 218 | + " | 5 | Destelbergen | 0.6 | 6.8 |\n", |
| 219 | + " | ... | ... | ... | ...|\n", |
217 | 220 | "\n",
|
218 |
| - "the added value of using Seaborn approach is HIGH. Represent your data [`tidy`](http://www.jeannicholashould.com/tidy-data-in-python.html) to achieve maximal benefit!\n", |
| 221 | + " the added value of using Seaborn approach is HIGH. Represent your data [`tidy`](http://www.jeannicholashould.com/tidy-data-in-python.html) to achieve maximal benefit!\n", |
219 | 222 | "\n",
|
220 | 223 | "* When you want to visualize __distributions__ of data or __regressions__ between variables, the added value of using Seaborn approach is HIGH."
|
221 | 224 | ]
|
|
1191 | 1194 | "nbconvert_exporter": "python",
|
1192 | 1195 | "pygments_lexer": "ipython3",
|
1193 | 1196 | "version": "3.8.10"
|
| 1197 | + }, |
| 1198 | + "widgets": { |
| 1199 | + "application/vnd.jupyter.widget-state+json": { |
| 1200 | + "state": {}, |
| 1201 | + "version_major": 2, |
| 1202 | + "version_minor": 0 |
| 1203 | + } |
1194 | 1204 | }
|
1195 | 1205 | },
|
1196 | 1206 | "nbformat": 4,
|
|
0 commit comments