@@ -605,6 +605,7 @@ def _configure_batch_sampler(main_sampler,
605605 saved_scale = np .array (main_sampler .saved_run ['scale' ])
606606 saved_blobs = np .array (main_sampler .saved_run ['blob' ])
607607 saved_distances_indices = np .array (main_sampler .saved_run ["distance_insertion_index" ])
608+ saved_log_distance_ratios = np .array (main_sampler .saved_run ["log_distance_ratio" ])
608609 saved_likelihood_indices = np .array (main_sampler .saved_run ["likelihood_insertion_index" ])
609610 first_points = []
610611
@@ -724,6 +725,7 @@ def _configure_batch_sampler(main_sampler,
724725
725726 live_scale = saved_scale [subset0 [0 ]]
726727 live_distance_index = saved_distances_indices [subset0 [0 ]]
728+ live_log_distance_ratio = saved_log_distance_ratios [subset0 [0 ]]
727729 live_likelihood_index = saved_likelihood_indices [subset0 [0 ]]
728730 # set the scale based on the lowest point
729731
@@ -776,6 +778,7 @@ def _configure_batch_sampler(main_sampler,
776778 batch_sampler .scale = live_scale
777779 batch_sampler .live_blobs = live_blobs
778780 batch_sampler .distance_insertion_index = live_distance_index
781+ batch_sampler .log_distance_ratio = live_log_distance_ratio
779782 batch_sampler .likelihood_insertion_index = live_likelihood_index
780783
781784 batch_sampler .update_bound_if_needed (logl_min )
@@ -1111,7 +1114,7 @@ def results(self):
11111114 ('bound_iter' , np .array (self .saved_run ['bounditer' ])))
11121115 results .append (
11131116 ('samples_bound' , np .array (self .saved_run ['boundidx' ])))
1114- for key in ['scale' , 'distance_insertion_index' , 'likelihood_insertion_index' ]:
1117+ for key in ['scale' , 'distance_insertion_index' , 'log_distance_ratio' , ' likelihood_insertion_index' ]:
11151118 results .append ((key , np .array (self .saved_run [key ])))
11161119
11171120 return Results (results )
@@ -1367,6 +1370,7 @@ def sample_initial(self,
13671370 bounditer = results .bounditer ,
13681371 scale = self .sampler .scale ,
13691372 distance_insertion_index = self .sampler .distance_insertion_index ,
1373+ log_distance_ratio = self .sampler .log_distance_ratio ,
13701374 likelihood_insertion_index = self .sampler .likelihood_insertion_index ,
13711375 )
13721376
@@ -1415,6 +1419,7 @@ def sample_initial(self,
14151419 bounditer = results .bounditer ,
14161420 scale = self .sampler .scale ,
14171421 distance_insertion_index = - 1 ,
1422+ log_distance_ratio = - 1 ,
14181423 likelihood_insertion_index = - 1 ,
14191424 )
14201425
@@ -1626,6 +1631,7 @@ def sample_batch(self,
16261631 bounditer = results .bounditer ,
16271632 scale = batch_sampler .scale ,
16281633 distance_insertion_index = batch_sampler .distance_insertion_index ,
1634+ log_distance_ratio = batch_sampler .log_distance_ratio ,
16291635 likelihood_insertion_index = batch_sampler .likelihood_insertion_index ,
16301636 )
16311637 self .new_run .append (D )
@@ -1678,6 +1684,7 @@ def sample_batch(self,
16781684 bounditer = results .bounditer ,
16791685 scale = batch_sampler .scale ,
16801686 distance_insertion_index = - 1 ,
1687+ log_distance_ratio = - 1 ,
16811688 likelihood_insertion_index = - 1 ,
16821689 )
16831690 self .new_run .append (D )
@@ -1713,7 +1720,9 @@ def combine_runs(self):
17131720 for k in [
17141721 'id' , 'u' , 'v' , 'logl' , 'nc' , 'boundidx' , 'it' , 'bounditer' ,
17151722 'n' , 'scale' , 'blob' , 'logvol' ,
1716- 'distance_insertion_index' , 'likelihood_insertion_index' ,
1723+ 'distance_insertion_index' ,
1724+ 'log_distance_ratio' ,
1725+ 'likelihood_insertion_index' ,
17171726 ]:
17181727 saved_d [k ] = np .array (self .saved_run [k ])
17191728 new_d [k ] = np .array (self .new_run [k ])
@@ -1766,7 +1775,9 @@ def combine_runs(self):
17661775 for k in [
17671776 'id' , 'u' , 'v' , 'logl' , 'nc' , 'boundidx' , 'it' ,
17681777 'bounditer' , 'scale' , 'blob' ,
1769- 'distance_insertion_index' , 'likelihood_insertion_index' ,
1778+ 'distance_insertion_index' ,
1779+ 'log_distance_ratio' ,
1780+ 'likelihood_insertion_index' ,
17701781 ]:
17711782 add_info [k ] = add_source [k ][add_idx ]
17721783 self .saved_run .append (add_info )
0 commit comments