Skip to content

Commit a9704c4

Browse files
authored
Merge branch 'master' into pruning_morph_op_hacktoberfest_joydipb01
2 parents 1f9c818 + c79034c commit a9704c4

File tree

14 files changed

+223
-42
lines changed

14 files changed

+223
-42
lines changed

.github/workflows/build.yml

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -9,13 +9,7 @@ jobs:
99
build:
1010
runs-on: ubuntu-latest
1111
steps:
12-
- run:
13-
sudo apt-get update && sudo apt-get install -y libtiff5-dev libjpeg8-dev libopenjp2-7-dev
14-
zlib1g-dev libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python3-tk
15-
libharfbuzz-dev libfribidi-dev libxcb1-dev
16-
libxml2-dev libxslt-dev
17-
libhdf5-dev
18-
libopenblas-dev
12+
- run: sudo apt-get update && sudo apt-get install -y libhdf5-dev
1913
- uses: actions/checkout@v5
2014
- uses: astral-sh/setup-uv@v7
2115
with:
@@ -32,6 +26,7 @@ jobs:
3226
--ignore=computer_vision/cnn_classification.py
3327
--ignore=docs/conf.py
3428
--ignore=dynamic_programming/k_means_clustering_tensorflow.py
29+
--ignore=machine_learning/local_weighted_learning/local_weighted_learning.py
3530
--ignore=machine_learning/lstm/lstm_prediction.py
3631
--ignore=neural_network/input_data.py
3732
--ignore=project_euler/

CONTRIBUTING.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,7 @@ We want your work to be readable by others; therefore, we encourage you to note
9999
ruff check
100100
```
101101

102-
- Original code submission require docstrings or comments to describe your work.
102+
- Original code submissions require docstrings or comments to describe your work.
103103

104104
- More on docstrings and comments:
105105

DIRECTORY.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -626,6 +626,7 @@
626626
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
627627
* [Similarity Search](machine_learning/similarity_search.py)
628628
* [Support Vector Machines](machine_learning/support_vector_machines.py)
629+
* [T Stochastic Neighbour Embedding](machine_learning/t_stochastic_neighbour_embedding.py)
629630
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
630631
* [Xgboost Classifier](machine_learning/xgboost_classifier.py)
631632
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)

machine_learning/decision_tree.py

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -146,14 +146,13 @@ def predict(self, x):
146146
"""
147147
if self.prediction is not None:
148148
return self.prediction
149-
elif self.left or self.right is not None:
149+
elif self.left is not None and self.right is not None:
150150
if x >= self.decision_boundary:
151151
return self.right.predict(x)
152152
else:
153153
return self.left.predict(x)
154154
else:
155-
print("Error: Decision tree not yet trained")
156-
return None
155+
raise ValueError("Decision tree not yet trained")
157156

158157

159158
class TestDecisionTree:
@@ -201,4 +200,4 @@ def main():
201200
main()
202201
import doctest
203202

204-
doctest.testmod(name="mean_squarred_error", verbose=True)
203+
doctest.testmod(name="mean_squared_error", verbose=True)
Lines changed: 178 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,178 @@
1+
"""
2+
t-distributed stochastic neighbor embedding (t-SNE)
3+
4+
For more details, see:
5+
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
6+
"""
7+
8+
import doctest
9+
10+
import numpy as np
11+
from numpy import ndarray
12+
from sklearn.datasets import load_iris
13+
14+
15+
def collect_dataset() -> tuple[ndarray, ndarray]:
16+
"""
17+
Load the Iris dataset and return features and labels.
18+
19+
Returns:
20+
tuple[ndarray, ndarray]: Feature matrix and target labels.
21+
22+
>>> features, targets = collect_dataset()
23+
>>> features.shape
24+
(150, 4)
25+
>>> targets.shape
26+
(150,)
27+
"""
28+
iris_dataset = load_iris()
29+
return np.array(iris_dataset.data), np.array(iris_dataset.target)
30+
31+
32+
def compute_pairwise_affinities(data_matrix: ndarray, sigma: float = 1.0) -> ndarray:
33+
"""
34+
Compute high-dimensional affinities (P matrix) using a Gaussian kernel.
35+
36+
Args:
37+
data_matrix: Input data of shape (n_samples, n_features).
38+
sigma: Gaussian kernel bandwidth.
39+
40+
Returns:
41+
ndarray: Symmetrized probability matrix.
42+
43+
>>> x = np.array([[0.0, 0.0], [1.0, 0.0]])
44+
>>> probabilities = compute_pairwise_affinities(x)
45+
>>> float(round(probabilities[0, 1], 3))
46+
0.25
47+
"""
48+
n_samples = data_matrix.shape[0]
49+
squared_sum = np.sum(np.square(data_matrix), axis=1)
50+
squared_distance = np.add(
51+
np.add(-2 * np.dot(data_matrix, data_matrix.T), squared_sum).T, squared_sum
52+
)
53+
54+
affinity_matrix = np.exp(-squared_distance / (2 * sigma**2))
55+
np.fill_diagonal(affinity_matrix, 0)
56+
57+
affinity_matrix /= np.sum(affinity_matrix)
58+
return (affinity_matrix + affinity_matrix.T) / (2 * n_samples)
59+
60+
61+
def compute_low_dim_affinities(embedding_matrix: ndarray) -> tuple[ndarray, ndarray]:
62+
"""
63+
Compute low-dimensional affinities (Q matrix) using a Student-t distribution.
64+
65+
Args:
66+
embedding_matrix: Low-dimensional embedding of shape (n_samples, n_components).
67+
68+
Returns:
69+
tuple[ndarray, ndarray]: (Q probability matrix, numerator matrix).
70+
71+
>>> y = np.array([[0.0, 0.0], [1.0, 0.0]])
72+
>>> q_matrix, numerators = compute_low_dim_affinities(y)
73+
>>> q_matrix.shape
74+
(2, 2)
75+
"""
76+
squared_sum = np.sum(np.square(embedding_matrix), axis=1)
77+
numerator_matrix = 1 / (
78+
1
79+
+ np.add(
80+
np.add(-2 * np.dot(embedding_matrix, embedding_matrix.T), squared_sum).T,
81+
squared_sum,
82+
)
83+
)
84+
np.fill_diagonal(numerator_matrix, 0)
85+
86+
q_matrix = numerator_matrix / np.sum(numerator_matrix)
87+
return q_matrix, numerator_matrix
88+
89+
90+
def apply_tsne(
91+
data_matrix: ndarray,
92+
n_components: int = 2,
93+
learning_rate: float = 200.0,
94+
n_iter: int = 500,
95+
) -> ndarray:
96+
"""
97+
Apply t-SNE for dimensionality reduction.
98+
99+
Args:
100+
data_matrix: Original dataset (features).
101+
n_components: Target dimension (2D or 3D).
102+
learning_rate: Step size for gradient descent.
103+
n_iter: Number of iterations.
104+
105+
Returns:
106+
ndarray: Low-dimensional embedding of the data.
107+
108+
>>> features, _ = collect_dataset()
109+
>>> embedding = apply_tsne(features, n_components=2, n_iter=50)
110+
>>> embedding.shape
111+
(150, 2)
112+
"""
113+
if n_components < 1 or n_iter < 1:
114+
raise ValueError("n_components and n_iter must be >= 1")
115+
116+
n_samples = data_matrix.shape[0]
117+
rng = np.random.default_rng()
118+
embedding = rng.standard_normal((n_samples, n_components)) * 1e-4
119+
120+
high_dim_affinities = compute_pairwise_affinities(data_matrix)
121+
high_dim_affinities = np.maximum(high_dim_affinities, 1e-12)
122+
123+
embedding_increment = np.zeros_like(embedding)
124+
momentum = 0.5
125+
126+
for iteration in range(n_iter):
127+
low_dim_affinities, numerator_matrix = compute_low_dim_affinities(embedding)
128+
low_dim_affinities = np.maximum(low_dim_affinities, 1e-12)
129+
130+
affinity_diff = high_dim_affinities - low_dim_affinities
131+
132+
gradient = 4 * (
133+
np.dot((affinity_diff * numerator_matrix), embedding)
134+
- np.multiply(
135+
np.sum(affinity_diff * numerator_matrix, axis=1)[:, np.newaxis],
136+
embedding,
137+
)
138+
)
139+
140+
embedding_increment = momentum * embedding_increment - learning_rate * gradient
141+
embedding += embedding_increment
142+
143+
if iteration == int(n_iter / 4):
144+
momentum = 0.8
145+
146+
return embedding
147+
148+
149+
def main() -> None:
150+
"""
151+
Run t-SNE on the Iris dataset and display the first 5 embeddings.
152+
153+
>>> main() # doctest: +ELLIPSIS
154+
t-SNE embedding (first 5 points):
155+
[[...
156+
"""
157+
features, _labels = collect_dataset()
158+
embedding = apply_tsne(features, n_components=2, n_iter=300)
159+
160+
if not isinstance(embedding, np.ndarray):
161+
raise TypeError("t-SNE embedding must be an ndarray")
162+
163+
print("t-SNE embedding (first 5 points):")
164+
print(embedding[:5])
165+
166+
# Optional visualization (Ruff/mypy compliant)
167+
168+
# import matplotlib.pyplot as plt
169+
# plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap="viridis")
170+
# plt.title("t-SNE Visualization of the Iris Dataset")
171+
# plt.xlabel("Dimension 1")
172+
# plt.ylabel("Dimension 2")
173+
# plt.show()
174+
175+
176+
if __name__ == "__main__":
177+
doctest.testmod()
178+
main()

maths/factorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ def factorial_recursive(n: int) -> int:
5656
raise ValueError("factorial() only accepts integral values")
5757
if n < 0:
5858
raise ValueError("factorial() not defined for negative values")
59-
return 1 if n in {0, 1} else n * factorial(n - 1)
59+
return 1 if n in {0, 1} else n * factorial_recursive(n - 1)
6060

6161

6262
if __name__ == "__main__":

maths/fibonacci.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -183,7 +183,7 @@ def fib_memoization(n: int) -> list[int]:
183183
"""
184184
if n < 0:
185185
raise ValueError("n is negative")
186-
# Cache must be outside recursuive function
186+
# Cache must be outside recursive function
187187
# other it will reset every time it calls itself.
188188
cache: dict[int, int] = {0: 0, 1: 1, 2: 1} # Prefilled cache
189189

maths/monte_carlo.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
from statistics import mean
99

1010

11-
def pi_estimator(iterations: int):
11+
def pi_estimator(iterations: int) -> None:
1212
"""
1313
An implementation of the Monte Carlo method used to find pi.
1414
1. Draw a 2x2 square centred at (0,0).

maths/volume.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -555,7 +555,7 @@ def main():
555555
print(f"Torus: {vol_torus(2, 2) = }") # ~= 157.9
556556
print(f"Conical Frustum: {vol_conical_frustum(2, 2, 4) = }") # ~= 58.6
557557
print(f"Spherical cap: {vol_spherical_cap(1, 2) = }") # ~= 5.24
558-
print(f"Spheres intersetion: {vol_spheres_intersect(2, 2, 1) = }") # ~= 21.21
558+
print(f"Spheres intersection: {vol_spheres_intersect(2, 2, 1) = }") # ~= 21.21
559559
print(f"Spheres union: {vol_spheres_union(2, 2, 1) = }") # ~= 45.81
560560
print(
561561
f"Hollow Circular Cylinder: {vol_hollow_circular_cylinder(1, 2, 3) = }"

pyproject.toml

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -3,10 +3,9 @@ name = "thealgorithms-python"
33
version = "0.0.1"
44
description = "TheAlgorithms in Python"
55
authors = [ { name = "TheAlgorithms Contributors" } ]
6-
requires-python = ">=3.13"
6+
requires-python = ">=3.14"
77
classifiers = [
88
"Programming Language :: Python :: 3 :: Only",
9-
"Programming Language :: Python :: 3.13",
109
]
1110
dependencies = [
1211
"beautifulsoup4>=4.12.3",
@@ -23,6 +22,7 @@ dependencies = [
2322
"pillow>=11.3",
2423
"rich>=13.9.4",
2524
"scikit-learn>=1.5.2",
25+
"scipy>=1.16.2",
2626
"sphinx-pyproject>=0.3",
2727
"statsmodels>=0.14.4",
2828
"sympy>=1.13.3",
@@ -48,7 +48,7 @@ euler-validate = [
4848
]
4949

5050
[tool.ruff]
51-
target-version = "py313"
51+
target-version = "py314"
5252

5353
output-format = "full"
5454
lint.select = [
@@ -109,7 +109,7 @@ lint.ignore = [
109109
# `ruff rule S101` for a description of that rule
110110
"B904", # Within an `except` clause, raise exceptions with `raise ... from err` -- FIX ME
111111
"B905", # `zip()` without an explicit `strict=` parameter -- FIX ME
112-
"EM101", # Exception must not use a string literal, assign to variable first
112+
"EM101", # Exception must not use a string literal, assign to a variable first
113113
"EXE001", # Shebang is present but file is not executable -- DO NOT FIX
114114
"G004", # Logging statement uses f-string
115115
"ISC001", # Conflicts with ruff format -- DO NOT FIX
@@ -125,6 +125,7 @@ lint.ignore = [
125125
"S311", # Standard pseudo-random generators are not suitable for cryptographic purposes -- FIX ME
126126
"SIM905", # Consider using a list literal instead of `str.split` -- DO NOT FIX
127127
"SLF001", # Private member accessed: `_Iterator` -- FIX ME
128+
"UP037", # FIX ME
128129
]
129130

130131
lint.per-file-ignores."data_structures/hashing/tests/test_hash_map.py" = [

0 commit comments

Comments
 (0)