Skip to content

Commit a5dac1a

Browse files
authored
Merge pull request #102 from jrzaurin/3rd_party_integration_example
3rd party integration example
2 parents bc5e0d2 + 07c4433 commit a5dac1a

34 files changed

+4373
-99
lines changed

examples/notebooks/airbnb_data_preprocessing.ipynb renamed to examples/notebooks/00_airbnb_data_preprocessing.ipynb

Lines changed: 5 additions & 5 deletions
Large diffs are not rendered by default.

examples/notebooks/01_Preprocessors_and_utils.ipynb renamed to examples/notebooks/01_preprocessors_and_utils.ipynb

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Processors and Utils\n",
7+
"# Processors and Utils\n",
88
"\n",
99
"Description of the main tools and utilities that one needs to prepare the data for a `WideDeep` model constructor. \n",
1010
"\n",
@@ -745,7 +745,7 @@
745745
],
746746
"metadata": {
747747
"kernelspec": {
748-
"display_name": "Python 3 (ipykernel)",
748+
"display_name": "Python 3.9.7 ('base')",
749749
"language": "python",
750750
"name": "python3"
751751
},
@@ -759,7 +759,12 @@
759759
"name": "python",
760760
"nbconvert_exporter": "python",
761761
"pygments_lexer": "ipython3",
762-
"version": "3.8.12"
762+
"version": "3.9.7"
763+
},
764+
"vscode": {
765+
"interpreter": {
766+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
767+
}
763768
}
764769
},
765770
"nbformat": 4,

examples/notebooks/02_model_components.ipynb

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Model Components\n",
7+
"# Model Components\n",
88
"\n",
99
"The main components of a `WideDeep` (i.e. Multimodal) model are tabular data, text and images, which are feed into the model via so called `wide`, `deeptabular`, `deeptext` and `deepimage` model components"
1010
]
@@ -584,7 +584,7 @@
584584
],
585585
"metadata": {
586586
"kernelspec": {
587-
"display_name": "Python 3 (ipykernel)",
587+
"display_name": "Python 3.9.7 ('base')",
588588
"language": "python",
589589
"name": "python3"
590590
},
@@ -598,7 +598,12 @@
598598
"name": "python",
599599
"nbconvert_exporter": "python",
600600
"pygments_lexer": "ipython3",
601-
"version": "3.8.12"
601+
"version": "3.9.7"
602+
},
603+
"vscode": {
604+
"interpreter": {
605+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
606+
}
602607
}
603608
},
604609
"nbformat": 4,

mkdocs/sources/examples/03_Binary_Classification_with_Defaults.ipynb renamed to examples/notebooks/03_binary_classification_with_defaults.ipynb

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Simple Binary Classification with defaults\n",
7+
"# Simple Binary Classification with defaults\n",
88
"\n",
99
"In this notebook we will train a Wide and Deep model and simply a \"Deep\" model using the well known adult dataset"
1010
]
@@ -1197,7 +1197,7 @@
11971197
],
11981198
"metadata": {
11991199
"kernelspec": {
1200-
"display_name": "Python 3 (ipykernel)",
1200+
"display_name": "Python 3.9.7 ('base')",
12011201
"language": "python",
12021202
"name": "python3"
12031203
},
@@ -1211,7 +1211,12 @@
12111211
"name": "python",
12121212
"nbconvert_exporter": "python",
12131213
"pygments_lexer": "ipython3",
1214-
"version": "3.8.12"
1214+
"version": "3.9.7"
1215+
},
1216+
"vscode": {
1217+
"interpreter": {
1218+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
1219+
}
12151220
}
12161221
},
12171222
"nbformat": 4,

examples/notebooks/04_regression_with_images_and_text.ipynb

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Regression with Images and Text\n",
7+
"# Regression with Images and Text\n",
88
"\n",
99
"In this notebook we will go through a series of examples on how to combine all Wide & Deep components.\n",
1010
"\n",
@@ -752,7 +752,7 @@
752752
],
753753
"metadata": {
754754
"kernelspec": {
755-
"display_name": "Python 3 (ipykernel)",
755+
"display_name": "Python 3.9.7 ('base')",
756756
"language": "python",
757757
"name": "python3"
758758
},
@@ -766,7 +766,12 @@
766766
"name": "python",
767767
"nbconvert_exporter": "python",
768768
"pygments_lexer": "ipython3",
769-
"version": "3.8.12"
769+
"version": "3.9.7"
770+
},
771+
"vscode": {
772+
"interpreter": {
773+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
774+
}
770775
}
771776
},
772777
"nbformat": 4,

examples/notebooks/05_save_and_load_model_and_artifacts.ipynb

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7+
"# Save and load model and artifacts\n",
78
"In this notebook I will show the different options to save and load a model, as well as some additional objects produced during training. \n",
89
"\n",
910
"On a given day, you train a model..."
@@ -1113,7 +1114,7 @@
11131114
],
11141115
"metadata": {
11151116
"kernelspec": {
1116-
"display_name": "Python 3 (ipykernel)",
1117+
"display_name": "Python 3.9.7 ('base')",
11171118
"language": "python",
11181119
"name": "python3"
11191120
},
@@ -1127,7 +1128,12 @@
11271128
"name": "python",
11281129
"nbconvert_exporter": "python",
11291130
"pygments_lexer": "ipython3",
1130-
"version": "3.8.12"
1131+
"version": "3.9.7"
1132+
},
1133+
"vscode": {
1134+
"interpreter": {
1135+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
1136+
}
11311137
}
11321138
},
11331139
"nbformat": 4,

examples/notebooks/06_fineTune_and_warmup.ipynb renamed to examples/notebooks/06_finetune_and_warmup.ipynb

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## The FineTune/Warm Up option\n",
7+
"# The FineTune/Warm Up option\n",
88
"\n",
99
"Let's place ourselves in two possible scenarios. \n",
1010
"\n",
@@ -1581,7 +1581,7 @@
15811581
],
15821582
"metadata": {
15831583
"kernelspec": {
1584-
"display_name": "Python 3 (ipykernel)",
1584+
"display_name": "Python 3.9.7 ('base')",
15851585
"language": "python",
15861586
"name": "python3"
15871587
},
@@ -1595,7 +1595,12 @@
15951595
"name": "python",
15961596
"nbconvert_exporter": "python",
15971597
"pygments_lexer": "ipython3",
1598-
"version": "3.8.12"
1598+
"version": "3.9.7"
1599+
},
1600+
"vscode": {
1601+
"interpreter": {
1602+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
1603+
}
15991604
}
16001605
},
16011606
"nbformat": 4,

mkdocs/sources/examples/07_Custom_Components.ipynb renamed to examples/notebooks/07_custom_components.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Custom components\n",
7+
"# Custom components\n",
88
"\n",
99
"As I mentioned earlier in the example notebooks, and also in the `README`, it is possible to customise almost every component in `pytorch-widedeep`.\n",
1010
"\n",

examples/notebooks/09_extracting_embeddings.ipynb

Lines changed: 16 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,14 @@
11
{
22
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Extracting embeddings\n",
8+
"\n",
9+
"This notebook is a simple guide to extracting learned feature embeddings using Tab2Vec"
10+
]
11+
},
312
{
413
"cell_type": "code",
514
"execution_count": 1,
@@ -494,7 +503,7 @@
494503
],
495504
"metadata": {
496505
"kernelspec": {
497-
"display_name": "Python 3 (ipykernel)",
506+
"display_name": "Python 3.9.7 ('base')",
498507
"language": "python",
499508
"name": "python3"
500509
},
@@ -508,7 +517,12 @@
508517
"name": "python",
509518
"nbconvert_exporter": "python",
510519
"pygments_lexer": "ipython3",
511-
"version": "3.8.12"
520+
"version": "3.9.7"
521+
},
522+
"vscode": {
523+
"interpreter": {
524+
"hash": "3b99005fd577fa40f3cce433b2b92303885900e634b2b5344c07c59d06c8792d"
525+
}
512526
}
513527
},
514528
"nbformat": 4,

0 commit comments

Comments
 (0)