@@ -38,14 +38,41 @@ python setup.py install
38
38
39
39
| attr | 1 workers (gensim) | 2 workers (gensim) | 4 workers (gensim) | 8 workers (gensim) | NVIDIA T4 (cusim) |
40
40
| :--------------------| ---------------------:| ---------------------:| ---------------------:| ---------------------:| --------------------:|
41
- | training time (sec) | 892.596 | 544.212 | 310.727 | 226.472 | ** 16.1615** |
42
- | pearson | 0.487832 | 0.487696 | 0.482821 | 0.487136 | ** 0.492101** |
43
- | spearman | 0.500846 | 0.506214 | 0.501048 | ** 0.506718** | 0.479468 |
41
+ | training time (sec) | 892.596 | 544.212 | 310.727 | 226.472 | ** 16.162** |
42
+ | pearson | 0.487832 | 0.487696 | 0.482821 | 0.487136 | ** 0.492101** |
43
+ | spearman | 0.500846 | 0.506214 | 0.501048 | ** 0.506718** | 0.479468 |
44
+
45
+ - W2V (skip gram, negative sampling)
46
+
47
+ | attr | 1 workers (gensim) | 2 workers (gensim) | 4 workers (gensim) | 8 workers (gensim) | NVIDIA T4 (cusim) |
48
+ | :--------------------| ---------------------:| ---------------------:| ---------------------:| ---------------------:| --------------------:|
49
+ | training time (sec) | 586.545 | 340.489 | 220.804 | 146.23 | 33.9173 |
50
+ | pearson | 0.354448 | 0.353952 | 0.352398 | 0.352925 | 0.342999 |
51
+ | spearman | 0.369146 | 0.369365 | 0.370565 | 0.365822 | 0.339781 |
52
+
53
+ - W2V (CBOW, hierarchical softmax)
54
+
55
+ | attr | 1 workers (gensim) | 2 workers (gensim) | 4 workers (gensim) | 8 workers (gensim) | NVIDIA T4 (cusim) |
56
+ | :--------------------| ---------------------:| ---------------------:| ---------------------:| ---------------------:| --------------------:|
57
+ | training time (sec) | 250.135 | 155.121 | 103.57 | 73.8073 | ** 6.20787** |
58
+ | pearson | 0.309651 | 0.321803 | 0.324854 | 0.314255 | ** 0.480298** |
59
+ | spearman | 0.294047 | 0.308723 | 0.318293 | 0.300591 | ** 0.480971** |
60
+
61
+ - W2V (CBOW, negative sampling)
62
+
63
+ | attr | 1 workers (gensim) | 2 workers (gensim) | 4 workers (gensim) | 8 workers (gensim) | NVIDIA T4 (cusim) |
64
+ | :--------------------| ---------------------:| ---------------------:| ---------------------:| ---------------------:| --------------------:|
65
+ | training time (sec) | 176.923 | 100.369 | 69.7829 | 49.9274 | ** 9.90391** |
66
+ | pearson | 0.18772 | 0.193152 | 0.204509 | 0.187924 | ** 0.368202** |
67
+ | spearman | 0.243975 | 0.24587 | 0.260531 | 0.237441 | ** 0.358042** |
44
68
45
69
- LDA (` nytimes ` dataset from https://archive.ics.uci.edu/ml/datasets/bag+of+words )
46
70
- I found that setting ` workers ` variable in gensim LdaMulticore does not work properly (it uses all cores in instance anyway), so I just compared the speed between cusim with single GPU and gensim with 8 vcpus.
47
71
- One can compare the quality of modeling by looking at ` examples/cusim.topics.txt ` and ` examples/gensim.topics.txt ` .
48
72
73
+ | attr | gensim (8 vpus) | cusim |
74
+ | :--------------------| ------------------:| --------:|
75
+ | training time (sec) | 447.376 | 76.6972 |
49
76
50
77
### Future tasks
51
78
0 commit comments