You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[`SetWithDotProcuts(s, v)`](@ref MathOptInterface.SetWithDotProducts) | The cone `s` with dot products with the fixed vectors `v`. |
86
+
|[`LinearCombinationInSet(s, v)`](@ref MathOptInterface.LinearCombinationInSet) | The cone of vector `(y, x)` such that ``\sum_i y_i v_i + x`` belongs to `s`. |
85
87
86
88
## Matrix cones
87
89
@@ -100,8 +102,6 @@ The matrix-valued set types implemented in MathOptInterface.jl are:
100
102
| [`HermitianPositiveSemidefiniteConeTriangle(d)`](@ref MathOptInterface.HermitianPositiveSemidefiniteConeTriangle) | The cone of Hermitian positive semidefinite matrices, with
101
103
`side_dimension` rows and columns. |
102
104
|[`Scaled(S)`](@ref MathOptInterface.Scaled) | The set `S` scaled so that [`Utilities.set_dot`](@ref MathOptInterface.Utilities.set_dot) corresponds to `LinearAlgebra.dot`|
103
-
|[`FrobeniusProductPostiviveSemidefiniteConeTriangle(d, A)`](@ref MathOptInterface.FrobeniusProductPostiviveSemidefiniteConeTriangle) | The cone of positive semidefinite matrices, with `side_dimension` rows and columns and their Frobenius inner product with the matrices in `A`. |
104
-
|[`LinearMatrixInequalityConeTriangle(d, A)`](@ref MathOptInterface.LinearMatrixInequalityConeTriangle) | The cone of vector `y` and symmetric `C`, with `side_dimension` rows and columns such that ``\sum_i y_i A_i + C`` is positive semidefinite. |
105
105
106
106
Some of these cones can take two forms: `XXXConeTriangle` and `XXXConeSquare`.
0 commit comments