Skip to content

Performance of algorithms #167

@odow

Description

@odow

Xavier says

I recently tried to solve an instance with TambyVanderpooten, MOKP_p-6_n-30_1.dat, which is on Tamby's repo and presented as solved by their algorithm in the paper. It does not run on the MOA implementation (nothing after 24 hours)

Here's my Julia code:

using JuMP, HiGHS
import MultiObjectiveAlgorithms as MOA

function solve_tamby_mokp(filename)
    lines = readlines(filename)
    p = parse(Int, lines[1])
    n = parse(Int, lines[2])
    b = parse(Float64, lines[3])
    C = collect(reduce(hcat, Float64.(x.args) for x in Meta.parse(lines[4]).args)')
    w = Meta.parse(lines[5]).args
    model = Model(() -> MOA.Optimizer(HiGHS.Optimizer))
    set_attribute(model, MOA.Algorithm(), MOA.TambyVanderpooten())
    @variable(model, x[1:n], Bin)
    @constraint(model, w' * x <= b)
    @objective(model, Max, C * x)
    optimize!(model)
    assert_is_solved_and_feasible(model)
    return [value.(x; result) for result in 1:result_count(model)]
end


solve_tamby_mokp(
    "/Users/odow/git/tambysatya/TamVan19/Instances/MOKP/MOKP_p-6_n-30_1.dat"
)

Output is

julia> using JuMP, HiGHS

julia> import MultiObjectiveAlgorithms as MOA

julia> function solve_tamby_mokp(filename)
           lines = readlines(filename)
           p = parse(Int, lines[1])
           n = parse(Int, lines[2])
           b = parse(Float64, lines[3])
           C = collect(reduce(hcat, Float64.(x.args) for x in Meta.parse(lines[4]).args)')
           w = Meta.parse(lines[5]).args
           model = Model(() -> MOA.Optimizer(HiGHS.Optimizer))
           set_attribute(model, MOA.Algorithm(), MOA.TambyVanderpooten())
           @variable(model, x[1:n], Bin)
           @constraint(model, w' * x <= b)
           @objective(model, Max, C * x)
           optimize!(model)
           assert_is_solved_and_feasible(model)
           return [value.(x; result) for result in 1:result_count(model)]
       end
solve_tamby_mokp (generic function with 1 method)

julia> solve_tamby_mokp(
           "/Users/odow/git/tambysatya/TamVan19/Instances/MOKP/MOKP_p-6_n-30_1.dat"
       )
--------------------------------------------------------------------------------------------------
        MultiObjectiveAlgorithms.jl
--------------------------------------------------------------------------------------------------
Algorithm: TambyVanderpooten
--------------------------------------------------------------------------------------------------
solve #     Obj. 1       Obj. 2       Obj. 3       Obj. 4       Obj. 5       Obj. 6       Time    
--------------------------------------------------------------------------------------------------
    1   -1.17700e+03 -1.03200e+03 -1.07100e+03 -8.85000e+02 -8.46000e+02 -1.14100e+03  1.42563e+00
    2   -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00  1.42763e+00
    3   -1.07200e+03 -1.22100e+03 -1.18100e+03 -9.83000e+02 -8.90000e+02 -1.13000e+03  1.43889e+00
    4   -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00  1.43945e+00
    5   -8.84000e+02 -1.05600e+03 -1.37000e+03 -9.59000e+02 -8.78000e+02 -9.51000e+02  1.44168e+00
    6   -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00  1.44223e+00
    7   -8.95000e+02 -9.81000e+02 -1.09800e+03 -1.14300e+03 -6.92000e+02 -1.04800e+03  1.44480e+00
    8   -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00  1.44535e+00
    9   -9.14000e+02 -1.00700e+03 -1.11600e+03 -8.59000e+02 -1.11800e+03 -1.15500e+03  1.44794e+00
   10   -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00  1.44849e+00
   11   -9.23000e+02 -1.01000e+03 -9.91000e+02 -8.57000e+02 -7.84000e+02 -1.41500e+03  1.45187e+00
   12   -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00 -0.00000e+00  1.45241e+00
   13  auxillary subproblem                                                            1.49690e+00
   14   -1.17700e+03 -1.03200e+03 -1.07100e+03 -8.85000e+02 -8.46000e+02 -1.14100e+03  1.69627e+00
   15  auxillary subproblem                                                            1.91702e+00
   16   -9.14000e+02 -1.00700e+03 -1.11600e+03 -8.59000e+02 -1.11800e+03 -1.15500e+03  1.91964e+00
   17  auxillary subproblem                                                            1.92204e+00
   18   -8.95000e+02 -9.81000e+02 -1.09800e+03 -1.14300e+03 -6.92000e+02 -1.04800e+03  1.92448e+00
   19  auxillary subproblem                                                            1.93331e+00
   20   -1.07200e+03 -1.22100e+03 -1.18100e+03 -9.83000e+02 -8.90000e+02 -1.13000e+03  1.93606e+00
   21  auxillary subproblem                                                            1.93798e+00
   22   -8.84000e+02 -1.05600e+03 -1.37000e+03 -9.59000e+02 -8.78000e+02 -9.51000e+02  1.94063e+00
   23  auxillary subproblem                                                            1.94374e+00
   24   -9.23000e+02 -1.01000e+03 -9.91000e+02 -8.57000e+02 -7.84000e+02 -1.41500e+03  1.95118e+00
   25  auxillary subproblem                                                            1.96168e+00
   26   -9.16000e+02 -1.00000e+03 -1.15100e+03 -1.13100e+03 -6.99000e+02 -1.02500e+03  1.97200e+00
   27  auxillary subproblem                                                            1.99172e+00
   28   -8.72000e+02 -1.04100e+03 -1.13500e+03 -1.12900e+03 -7.53000e+02 -9.86000e+02  1.99935e+00
   29  auxillary subproblem                                                            2.01168e+00
   30   -9.66000e+02 -9.78000e+02 -1.14400e+03 -1.12600e+03 -7.60000e+02 -1.01700e+03  2.02175e+00
   31  auxillary subproblem                                                            2.04473e+00
   32   -8.70000e+02 -1.06700e+03 -1.20700e+03 -1.12200e+03 -7.63000e+02 -1.04500e+03  2.06123e+00
   33  auxillary subproblem                                                            2.08916e+00
   34   -9.15000e+02 -1.06600e+03 -1.15200e+03 -1.12100e+03 -8.03000e+02 -1.14600e+03  2.09270e+00
   35  auxillary subproblem                                                            2.09913e+00
   36   -8.71000e+02 -9.77000e+02 -1.21300e+03 -1.12100e+03 -8.38000e+02 -1.02200e+03  2.10892e+00
   37  auxillary subproblem                                                            2.11703e+00
   38   -9.04000e+02 -1.09700e+03 -1.36600e+03 -9.91000e+02 -8.93000e+02 -1.09800e+03  2.11984e+00
   39  auxillary subproblem                                                            2.17713e+00
   40   -9.15000e+02 -1.06600e+03 -1.15200e+03 -1.12100e+03 -8.03000e+02 -1.14600e+03  2.18210e+00
   41  auxillary subproblem                                                            2.18672e+00
   42   -9.04000e+02 -1.00700e+03 -1.15700e+03 -8.87000e+02 -1.11300e+03 -1.08400e+03  2.18866e+00
   43  auxillary subproblem                                                            2.20184e+00
   44   -9.96000e+02 -1.16100e+03 -1.29700e+03 -1.11800e+03 -8.49000e+02 -1.10800e+03  2.20434e+00
   45  auxillary subproblem                                                            2.21396e+00
   46   -9.93000e+02 -1.03700e+03 -1.06000e+03 -8.98000e+02 -8.36000e+02 -1.41200e+03  2.22656e+00
   47  auxillary subproblem                                                            2.25049e+00
   48   -9.38000e+02 -1.05300e+03 -1.18700e+03 -1.11400e+03 -8.50000e+02 -1.08400e+03  2.25784e+00
   49  auxillary subproblem                                                            2.30797e+00
   50   -1.00700e+03 -1.11300e+03 -1.22100e+03 -1.10800e+03 -8.58000e+02 -1.15600e+03  2.31168e+00
  ... lines omitted ...
  977  auxillary subproblem                                                            1.39737e+02
  978   -9.96000e+02 -1.16100e+03 -1.29700e+03 -1.11800e+03 -8.49000e+02 -1.10800e+03  1.39740e+02
  979  auxillary subproblem                                                            1.40425e+02
  980   -9.96000e+02 -1.16100e+03 -1.29700e+03 -1.11800e+03 -8.49000e+02 -1.10800e+03  1.40427e+02
  981  auxillary subproblem                                                            1.41089e+02
  982   -9.96000e+02 -1.16100e+03 -1.29700e+03 -1.11800e+03 -8.49000e+02 -1.10800e+03  1.41092e+02
^C--------------------------------------------------------------------------------------------------
TerminationStatus: INTERRUPTED
ResultCount: 276
--------------------------------------------------------------------------------------------------
ERROR: The model was not solved correctly. Here is the output of `solution_summary` to help debug why this happened:

solution_summary(; result = 1, verbose = false)
├ solver_name          : MOA[algorithm=MultiObjectiveAlgorithms.TambyVanderpooten, optimizer=HiGHS]
├ Termination
│ ├ termination_status : INTERRUPTED
│ ├ result_count       : 276
│ ├ raw_status         : Solve complete. Found 276 solution(s)
│ └ objective_bound    : [1.17700e+03,1.22100e+03,1.37000e+03,1.14300e+03,1.11800e+03,1.41500e+03]
├ Solution (result = 1)
│ ├ primal_status        : FEASIBLE_POINT
│ ├ dual_status          : NO_SOLUTION
│ └ objective_value      : [1.17700e+03,1.03200e+03,1.07100e+03,8.85000e+02,8.46000e+02,1.14100e+03]
└ Work counters
  └ solve_time (sec)   : 1.41759e+02

Stacktrace:
 [1] error(s::String)
   @ Base ./error.jl:44
 [2] #assert_is_solved_and_feasible#103
   @ ~/.julia/packages/JuMP/e83v9/src/optimizer_interface.jl:1008 [inlined]
 [3] assert_is_solved_and_feasible
   @ ~/.julia/packages/JuMP/e83v9/src/optimizer_interface.jl:1002 [inlined]
 [4] solve_tamby_mokp(filename::String)
   @ Main ./REPL[4]:14
 [5] top-level scope
   @ REPL[5]:1

I don't know if this is expected behaviour of if we're not excluding some of the search boxes correctly.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions