Skip to content

error raised when a JuMP variable with two indexes is used with GLPK and MOA #94

@xgandibleux

Description

@xgandibleux

The following error is raised on the following line (see code 3 and code 4 below), but no for codes 1 and 2 (who use the same definition of the expression):

julia> @objective(model, Max, [objective1, objective2])
ERROR: The solver does not support an objective function of type MathOptInterface.VectorAffineFunction{Float64}.       

This happens with a variable JuMP with two indexes and MOA+GLPK.
The problem does not appear with HiGHS, or without solver.

My configuration:
julia v"1.10.5"
JuMP v1.23.6
MultiObjectiveAlgorithms v1.3.5
GLPK v1.2.1
HiGHS v1.13.0

Codes:

using JuMP
using GLPK
import MultiObjectiveAlgorithms as MOA
       
m=2; n=3
p1 = rand(1:10,m,n)
p2 = rand(1:10,m,n)
w  = rand(1:10,m,n)
b  = Vector{Int64}(undef,m)
for i=1:m
    b[i] = floor(Int64,sum(w[i,:])/2.0) 
end

# CODE 1 (single objective GAP with objective1): no problem
model = Model(GLPK.Optimizer)
@variable(model, x[1:m, 1:n], Bin)
@expression(model, objective1, sum(p1[i,j]*x[i,j] for i in 1:m, j in 1:n) )
@expression(model, objective2, sum(p2[i,j]*x[i,j] for i in 1:m, j in 1:n) )
@objective(model, Max, objective1)
@constraint(model, [i=1:m], sum(w[i,j]*x[i,j] for j = 1:n) <= b[i])
@constraint(model, [j=1:n], sum(x[i,j] for i = 1:m) == 1)
optimize!(model)

# CODE 2 (single objective GAP with objective2): no problem
model = Model(GLPK.Optimizer)
@variable(model, x[1:m, 1:n], Bin)
@expression(model, objective1, sum(p1[i,j]*x[i,j] for i in 1:m, j in 1:n) )
@expression(model, objective2, sum(p2[i,j]*x[i,j] for i in 1:m, j in 1:n) )
@objective(model, Max, objective2)
@constraint(model, [i=1:m], sum(w[i,j]*x[i,j] for j = 1:n) <= b[i])
@constraint(model, [j=1:n], sum(x[i,j] for i = 1:m) == 1)
optimize!(model)

# CODE 3 (bi-objective GAP with [objective1,objective2] ): error raised
model = Model(GLPK.Optimizer)
@variable(model, x[1:m, 1:n], Bin)
@expression(model, objective1, sum(p1[i,j]*x[i,j] for i in 1:m, j in 1:n) )
@expression(model, objective2, sum(p2[i,j]*x[i,j] for i in 1:m, j in 1:n) )
@objective(model, Max, [objective1, objective2])
@constraint(model, [i=1:m], sum(w[i,j]*x[i,j] for j = 1:n) <= b[i])
@constraint(model, [j=1:n], sum(x[i,j] for i = 1:m) == 1)

# CODE 4: error raised 
model = Model(GLPK.Optimizer)
@variable(model, x[1:2, 1:2], Bin)
@expression(model, objective1, x[1,1]+x[1,2] )
@expression(model, objective2, x[2,1]+x[2,2] )
@objective(model, Max, [objective1, objective2])

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions