Skip to content

Commit 0d3785e

Browse files
authored
Add quadrotor example (#274)
* Add quadrotor example * Fixes * Working * Add ColorSchemes * Switch to CSDP * Fix * Remove SCS
1 parent 9770cfb commit 0d3785e

File tree

2 files changed

+260
-0
lines changed

2 files changed

+260
-0
lines changed

docs/Project.toml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
[deps]
22
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
33
CSDP = "0a46da34-8e4b-519e-b418-48813639ff34"
4+
ColorSchemes = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
45
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
56
Cyclotomics = "da8f5974-afbb-4dc8-91d8-516d5257c83b"
67
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
@@ -13,6 +14,7 @@ ImplicitPlots = "55ecb840-b828-11e9-1645-43f4a9f9ace7"
1314
Ipopt = "b6b21f68-93f8-5de0-b562-5493be1d77c9"
1415
Literate = "98b081ad-f1c9-55d3-8b20-4c87d4299306"
1516
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
17+
MatrixEquations = "99c1a7ee-ab34-5fd5-8076-27c950a045f4"
1618
MultivariateBases = "be282fd4-ad43-11e9-1d11-8bd9d7e43378"
1719
MultivariatePolynomials = "102ac46a-7ee4-5c85-9060-abc95bfdeaa3"
1820
MutableArithmetics = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
Lines changed: 258 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,258 @@
1+
# # Viability tube for quadrotor
2+
3+
#md # [![](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/generated/Systems and Control/quadrotor.ipynb)
4+
#md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/Systems and Control/quadrotor.ipynb)
5+
# **Adapted from**: [YAP21, Section V.D] for the model defined in [B12], [M16, Section IV] and [M19, Section 6.1]
6+
#
7+
# [B12] Bouffard, Patrick.
8+
# *On-board model predictive control of a quadrotor helicopter: Design, implementation, and experiments.*
9+
# CALIFORNIA UNIV BERKELEY DEPT OF COMPUTER SCIENCES, 2012.
10+
#
11+
# [M16] Mitchell, Ian M., et al.
12+
# *Ensuring safety for sampled data systems: An efficient algorithm for filtering potentially unsafe input signals.*
13+
# 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016.
14+
#
15+
# [M19] Mitchell, Ian M., Jacob Budzis, and Andriy Bolyachevets.
16+
# *Invariant, viability and discriminating kernel under-approximation via zonotope scaling.*
17+
# Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control. 2019.
18+
#
19+
# [YAP21] Yin, H., Arcak, M., Packard, A., & Seiler, P. (2021).
20+
# *Backward reachability for polynomial systems on a finite horizon.*
21+
# IEEE Transactions on Automatic Control, 66(12), 6025-6032.
22+
23+
using Test #src
24+
using DynamicPolynomials
25+
@polyvar x[1:6]
26+
@polyvar u[1:2]
27+
sinx5 = -0.166 * x[5]^3 + x[5]
28+
cosx5 = -0.498 * x[5]^2 + 1
29+
gravity = 9.81
30+
gain_u1 = 0.89 / 1.4
31+
d0 = 70
32+
d1 = 17
33+
n0 = 55
34+
f = [
35+
x[3],
36+
x[4],
37+
0,
38+
-gravity,
39+
x[6],
40+
-d0 * x[5] - d1 * x[6],
41+
]
42+
n_x = length(f)
43+
g = [
44+
0 0
45+
0 0
46+
gain_u1 * sinx5 0
47+
gain_u1 * cosx5 0
48+
0 0
49+
0 n0
50+
]
51+
n_u = size(g, 2)
52+
53+
# The constraints below are the same as [YAP21, M16, M19] except
54+
# [M16, M19] uses different bounds for `x[2]` and
55+
# [M16] uses different bounds for `x[5]`
56+
57+
using SumOfSquares
58+
rectangle = [1.7, 0.85, 0.8, 1, π/12, π/2, 1.5, π/12]
59+
X = BasicSemialgebraicSet(FullSpace(), typeof(x[1] + 1.0)[])
60+
for i in eachindex(x)
61+
lower = x[i] + rectangle[i] # x[i] >= -rectangle[i]
62+
upper = rectangle[i] - x[i] # x[i] <= rectangle[i]
63+
addinequality!(X, lower * upper) # -rectangle[i] <= x[i] <= rectangle[i]
64+
end
65+
X
66+
67+
## Controller for the linearized system
68+
69+
# The starting value for the Lyapunov function is the linear state-feedback
70+
# that maintains the quadrotor at the origin [YAP21, Remark 3].
71+
72+
using SparseArrays
73+
x0 = zeros(n_x)
74+
u0 = [gravity/gain_u1, 0.0]
75+
76+
# The linearization of `f` is given by
77+
78+
x_dot = f + g * u
79+
A = map(differentiate(x_dot, x)) do a
80+
a(x => x0, u => u0)
81+
end
82+
83+
# The linearization of `g` is given by:
84+
85+
B = map(differentiate(x_dot, u)) do b
86+
b(x => x0, u => u0)
87+
end
88+
89+
# We can compute the Linear-Quadratic Regulator using the same weight matrices
90+
# as [YAP21](https://github.com/heyinUCB/Backward-Reachability-Analysis-and-Control-Synthesis)
91+
92+
import MatrixEquations
93+
S, v, K = MatrixEquations.arec(A, B, 100, 10)
94+
@test all(c -> real(c) < 0, v) #src
95+
96+
# The corresponding quadratic regulator is:
97+
98+
P, _, _ = MatrixEquations.arec(A - B * K, 0.0, 10.0)
99+
100+
# It corresponds to the following quadratic Lyapunov function:
101+
102+
V0 = x' * P * x
103+
104+
# ## γ-step
105+
106+
# It is a Lyapunov function for the linear system but not necessarily for the nonlinear system as well.
107+
# We can however say that the γ-sublevel set `{x | x' P x ≤ γ}` is a (trivial) controlled invariant set for `γ = 0` (since it is empty).
108+
# We can try to see if there a larger `γ` such that the γ-sublevel set is also controlled invariant using
109+
# the γ step of [YAP21, Algorithm 1]
110+
111+
function _create(model, d, P)
112+
if d isa Int
113+
if P == SOSPoly # `d` is the maxdegree while for `SOSPoly`,
114+
d = div(d, 2) # it is the monomial basis of the squares
115+
end
116+
return @variable(model, variable_type = P(monomials(x, 0:d)))
117+
else
118+
return d
119+
end
120+
end
121+
122+
using LinearAlgebra
123+
function base_model(solver, V, k, s3, γ)
124+
model = SOSModel(solver)
125+
V = _create(model, V, Poly)
126+
k = _create.(model, k, Poly)
127+
s3 = _create(model, s3, SOSPoly)
128+
= differentiate # Let's use a fancy shortcut
129+
@constraint(model, (V, x) (f + g * k) <= s3 * (V - γ)) # [YAP21, (E.2)]
130+
for r in inequalities(X) # `{V ≤ γ} ⊆ {r ≥ 0}` iff `r ≤ 0 => V ≥ γ`
131+
@constraint(model, V >= γ, domain = @set(r <= 0)) # [YAP21, (E.3)]
132+
end
133+
return model, V, k, s3
134+
end
135+
136+
function γ_step(solver, V, γ_min, degree_k, degree_s3; γ_tol = 1e-1, max_iters = 10, γ_step = 0.5)
137+
γ0_min = γ_min
138+
γ_max = Inf
139+
num_iters = 0
140+
k_best = s3_best = nothing
141+
while true
142+
if γ_max - γ_min > γ_tol && num_iters < max_iters
143+
if isfinite(γ_max)
144+
γ = (γ_min + γ_max) / 2
145+
else
146+
γ = γ0_min + (γ_min - γ0_min + γ_step) * 2
147+
end
148+
elseif isnothing(k_best)
149+
@assert γ_min == γ0_min
150+
@info("Bisection finished without a feasible controller, let's find one")
151+
γ = γ0_min # Last run to compute a controller for the value of `γ` we know is feasible
152+
else
153+
break
154+
end
155+
model, V, k, s3 = base_model(solver, V, degree_k, degree_s3, γ)
156+
num_iters += 1
157+
@info("Iteration $num_iters/$max_iters : Solving with $(solver_name(model)) for `γ = `")
158+
optimize!(model)
159+
@info("After $(solve_time(model)) seconds, terminated with $(termination_status(model)) ($(raw_status(model)))")
160+
if primal_status(model) == MOI.FEASIBLE_POINT
161+
@info("Feasible solution found")
162+
γ_min = γ
163+
k_best = value.(k)
164+
s3_best = value(s3)
165+
elseif dual_status(model) == MOI.INFEASIBILITY_CERTIFICATE
166+
@info("Infeasibility certificate found")
167+
if γ == γ0_min # This corresponds to the case above where we reached the tol or max iteration and we just did a last run at the value of `γ_min` provided by the user
168+
error("The value `$γ0_min` of `γ_min` provided is not feasible")
169+
end
170+
γ_max = γ
171+
else
172+
@warn("Giving up $(raw_status(model)), $(termination_status(model)), $(primal_status(model)), $(dual_status(model))")
173+
break
174+
end
175+
if γ != γ0_min
176+
@info("Refined interval : `γ ∈ [$γ_min, $γ_max[`")
177+
end
178+
end
179+
if !isfinite(γ_max) && max_iters > 0
180+
@warn("Cannot find any infeasible `γ` after $num_iters iterations")
181+
end
182+
return γ_min, k_best, s3_best
183+
end
184+
185+
import CSDP
186+
solver = optimizer_with_attributes(CSDP.Optimizer, MOI.Silent() => true)
187+
γ1, κ1, s3_1 = γ_step(solver, V0, 0.0, [2, 2], 2)
188+
@test γ1 0.5 atol = 1.e-1 #src
189+
190+
# Let's visualize now the controlled invariant set we have found:
191+
192+
using ImplicitPlots
193+
using Plots
194+
import ColorSchemes
195+
function plot_lyapunovs(Vs, J; resolution = 1000, scheme = ColorSchemes.rainbow)
196+
xmax = rectangle[J[1]]
197+
ymax = rectangle[J[2]]
198+
rect_xs = [xmax, -xmax, -xmax, xmax, xmax]
199+
rect_ys = [ymax, ymax, -ymax, -ymax, ymax]
200+
p = plot(rect_xs, rect_ys, label="", color=:black)
201+
eliminated = x[setdiff(1:n_x, J)]
202+
for i in eachindex(Vs)
203+
V = subs(Vs[i], eliminated => zeros(length(eliminated)))
204+
linecolor = get(scheme, (i - 1) / max(length(Vs) - 1, 1))
205+
implicit_plot!(p, V; resolution, label="V$i", linecolor)
206+
end
207+
xlim = 1.05 * xmax
208+
ylim = 1.05 * ymax
209+
plot!(p, xlims=(-xlim, xlim), ylims=(-ylim, ylim), aspect_ratio = xmax / ymax)
210+
return p
211+
end
212+
Vs = [V0 - γ1]
213+
plot_lyapunovs(Vs, [1, 2])
214+
215+
# ## V-step
216+
217+
# Let's now fix the control law that we have found and try to find a superset
218+
# of the current controlled invariant set
219+
# That corresponds to the V-step of [YAP21, Algorithm 1]:
220+
221+
_degree(d::Int) = d
222+
_degree(V) = maxdegree(V)
223+
224+
function V_step(solver, V0, γ, k, s3)
225+
model, V, k, s3 = base_model(solver, _degree(V0), k, s3, γ)
226+
if !(V0 isa Int) # {V0 ≤ γ} ⊆ {V ≤ γ} iff V0 ≤ γ => V ≤ γ
227+
@constraint(model, V <= γ, domain = @set(V0 <= γ)) # [YAP21, (E.6)]
228+
end
229+
optimize!(model)
230+
return model, value(V)
231+
end
232+
233+
model, V1 = V_step(solver, V0, γ1, κ1, s3_1)
234+
solution_summary(model)
235+
236+
# We can see that the solver found a feasible solution.
237+
# Let's compare it:
238+
239+
push!(Vs, V1 - γ1)
240+
plot_lyapunovs(Vs, [1, 2])
241+
242+
# ## Continue iterating
243+
244+
# We could now find a better state feedback controller with this new Lyapunov.
245+
# Given the plot, we see that `γ` cannot be much improved, we mostly
246+
# want to find a better `κ` so let's set `max_iters` to zero
247+
248+
γ2, κ2, s3_2 = γ_step(solver, V0, γ1, [2, 2], 2, max_iters = 0)
249+
250+
# Let's see if this new controller allows to find a better Lyapunov.
251+
252+
model, V2 = V_step(solver, V0, γ2, κ2, s3_2)
253+
solution_summary(model)
254+
255+
# It does not seem that we gained any improvement so let's stop:
256+
257+
push!(Vs, V2 - γ2)
258+
plot_lyapunovs(Vs, [1, 2])

0 commit comments

Comments
 (0)