|
17 | 17 | <tr> |
18 | 18 | <td class="talk-table">10:00 </td> |
19 | 19 | <td class="talk-table"><div class="talk-title">The state of JuMP</div><div class="talk-speaker">Miles Lubin</div></td> |
20 | | - <td class="talk-table"><div class="talk-title">Optimizing over trained neural networks with MathOptAI.jl</div><div class="talk-speaker">Robby Parker</div></td> |
| 20 | + <td class="talk-table"><div class="talk-title">Large Scale JuMP Models with Constraint Generators</div><div class="talk-speaker">Benoît Legat</div></td> |
21 | 21 | </tr> |
22 | 22 | <tr> |
23 | 23 | <td class="talk-table">10:15 </td> |
|
27 | 27 | <tr> |
28 | 28 | <td class="talk-table">10:30 </td> |
29 | 29 | <td class="talk-table"><div class="talk-title">JuMP on demand: Creating your own compute cluster for solving optimisation problems</div><div class="talk-speaker">James Foster</div></td> |
30 | | - <td class="talk-table"><div class="talk-title">ApplicationDrivenLearning.jl a framework to train forecast models with application-driven cost functions</div><div class="talk-speaker">Joaquim Dias Garcia</div></td> |
| 30 | + <td class="talk-table"><div class="talk-title">Automatic Generation of JuMP.jl Constraints from ModelingToolkit.jl Models</div><div class="talk-speaker">Dimitri Alston</div></td> |
31 | 31 | </tr> |
32 | 32 | <tr> |
33 | 33 | <td class="talk-table">10:45 </td> |
34 | 34 | <td class="talk-table"><div class="talk-title">AdaptiveProjection.jl: Automating the Speed-Accuracy Trade-off in Random Projection Methods</div><div class="talk-speaker">Jean-François Baffier</div></td> |
35 | | - <td class="talk-table"><div class="talk-title">MadIPM.jl</div><div class="talk-speaker">Alexis Montoison</div></td> |
| 35 | + <td class="talk-table"></td> |
36 | 36 | </tr> |
37 | 37 | <tr> |
38 | 38 | <td class="talk-table">11:00 </td> |
39 | 39 | <td class="talk-table"><div class="talk-title">What's new in HiGHS, and thanks to JuMP for its support!</div><div class="talk-speaker">Julian Hall</div></td> |
40 | | - <td class="talk-table"><div class="talk-title">GPU Implementation of Algorithm NCL</div><div class="talk-speaker">Michael Saunders</div></td> |
| 40 | + <td class="talk-table"><div class="talk-title">CuClarabel: GPU Acceleration for a Conic Optimization Solver</div><div class="talk-speaker">Yuwen Chen</div></td> |
41 | 41 | </tr> |
42 | 42 | <tr> |
43 | 43 | <td class="talk-table">11:15 </td> |
|
47 | 47 | <tr> |
48 | 48 | <td class="talk-table">11:30 </td> |
49 | 49 | <td class="talk-table"><div class="talk-title">Revisiting sparse matrix coloring and bicoloring</div><div class="talk-speaker">Alexis Montoison</div></td> |
50 | | - <td class="talk-table"><div class="talk-title">CuClarabel: GPU Acceleration for a Conic Optimization Solver</div><div class="talk-speaker">Yuwen Chen</div></td> |
| 50 | + <td class="talk-table"><div class="talk-title">MadIPM.jl</div><div class="talk-speaker">Alexis Montoison</div></td> |
51 | 51 | </tr> |
52 | 52 | <tr> |
53 | 53 | <td class="talk-table">11:45 </td> |
54 | 54 | <td class="talk-table"></td> |
55 | | - <td class="talk-table"></td> |
| 55 | + <td class="talk-table"><div class="talk-title">GPU Implementation of Algorithm NCL</div><div class="talk-speaker">Michael Saunders</div></td> |
56 | 56 | </tr> |
57 | 57 | <tr> |
58 | 58 | <td class="talk-table">12:00 </td> |
59 | 59 | <td class="talk-table talk-break"><div class="talk-title">Lunch</div></td> |
60 | | - <td class="talk-table talk-break"><div class="talk-title">Lunch</div></td> |
| 60 | + <td class="talk-table"></td> |
61 | 61 | </tr> |
62 | 62 | <tr> |
63 | 63 | <td class="talk-table">12:15 </td> |
64 | 64 | <td class="talk-table talk-break"></td> |
65 | | - <td class="talk-table talk-break"></td> |
| 65 | + <td class="talk-table talk-break"><div class="talk-title">Lunch</div></td> |
66 | 66 | </tr> |
67 | 67 | <tr> |
68 | 68 | <td class="talk-table">12:30 </td> |
|
96 | 96 | </tr> |
97 | 97 | <tr> |
98 | 98 | <td class="talk-table">14:00 </td> |
99 | | - <td class="talk-table"><div class="talk-title">Automatic Generation of JuMP.jl Constraints from ModelingToolkit.jl Models</div><div class="talk-speaker">Dimitri Alston</div></td> |
100 | 99 | <td class="talk-table"><div class="talk-title">Bridging the Gap Between Models and Solvers through Constraint Programming</div><div class="talk-speaker">Jean-François Baffier</div></td> |
| 100 | + <td class="talk-table talk-break"></td> |
101 | 101 | </tr> |
102 | 102 | <tr> |
103 | 103 | <td class="talk-table">14:15 </td> |
104 | 104 | <td class="talk-table"></td> |
105 | | - <td class="talk-table"></td> |
| 105 | + <td class="talk-table"><div class="talk-title">ApplicationDrivenLearning.jl a framework to train forecast models with application-driven cost functions</div><div class="talk-speaker">Joaquim Dias Garcia</div></td> |
106 | 106 | </tr> |
107 | 107 | <tr> |
108 | 108 | <td class="talk-table">14:30 </td> |
109 | | - <td class="talk-table"><div class="talk-title">Large Scale JuMP Models with Constraint Generators</div><div class="talk-speaker">Benoît Legat</div></td> |
110 | 109 | <td class="talk-table"><div class="talk-title">Unlocking the Power of Google OR-Tools with MathOptInterface.jl</div><div class="talk-speaker">Thibaut Cuvelier</div></td> |
| 110 | + <td class="talk-table"><div class="talk-title">Optimizing over trained neural networks with MathOptAI.jl</div><div class="talk-speaker">Robby Parker</div></td> |
111 | 111 | </tr> |
112 | 112 | <tr> |
113 | 113 | <td class="talk-table">14:45 </td> |
|
116 | 116 | </tr> |
117 | 117 | <tr> |
118 | 118 | <td class="talk-table">15:00 </td> |
119 | | - <td class="talk-table talk-break"><div class="talk-title">Break</div></td> |
120 | | - <td class="talk-table talk-break"><div class="talk-title">Break</div></td> |
| 119 | + <td class="talk-table"><div class="talk-title">JuLS</div><div class="talk-speaker">Axel Navarro</div></td> |
| 120 | + <td class="talk-table"><div class="talk-title">Optimization Problem Surrogates with Graph Transformer Networks and integration within simulation workflows</div><div class="talk-speaker">Jose Daniel Lara</div></td> |
121 | 121 | </tr> |
122 | 122 | <tr> |
123 | 123 | <td class="talk-table">15:15 </td> |
124 | | - <td class="talk-table talk-break"></td> |
125 | | - <td class="talk-table talk-break"></td> |
| 124 | + <td class="talk-table"></td> |
| 125 | + <td class="talk-table"></td> |
126 | 126 | </tr> |
127 | 127 | <tr> |
128 | 128 | <td class="talk-table">15:30 </td> |
|
0 commit comments