|
16 | 16 | }, |
17 | 17 | { |
18 | 18 | "cell_type": "code", |
19 | | - "execution_count": 26, |
| 19 | + "execution_count": null, |
20 | 20 | "metadata": {}, |
21 | | - "outputs": [ |
22 | | - { |
23 | | - "data": { |
24 | | - "application/vnd.jupyter.widget-view+json": { |
25 | | - "model_id": "84885f1b70774e11a322cfd4bbc9b13f", |
26 | | - "version_major": 2, |
27 | | - "version_minor": 0 |
28 | | - }, |
29 | | - "text/plain": [ |
30 | | - "DataGrid(base_column_size=150, default_renderer=TextRenderer(background_color=VegaExpr(value=\"cell.value[1] ==…" |
31 | | - ] |
32 | | - }, |
33 | | - "metadata": {}, |
34 | | - "output_type": "display_data" |
35 | | - } |
36 | | - ], |
| 21 | + "outputs": [], |
37 | 22 | "source": [ |
38 | 23 | "import pandas as pd\n", |
39 | 24 | "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
|
49 | 34 | }, |
50 | 35 | { |
51 | 36 | "cell_type": "code", |
52 | | - "execution_count": 27, |
| 37 | + "execution_count": null, |
53 | 38 | "metadata": {}, |
54 | | - "outputs": [ |
55 | | - { |
56 | | - "data": { |
57 | | - "application/vnd.jupyter.widget-view+json": { |
58 | | - "model_id": "fdccc87c437542ff9e37af623ea79794", |
59 | | - "version_major": 2, |
60 | | - "version_minor": 0 |
61 | | - }, |
62 | | - "text/plain": [ |
63 | | - "DataGrid(base_column_size=150, default_renderer=TextRenderer(background_color=VegaExpr(value=\"cell.value[1] ==…" |
64 | | - ] |
65 | | - }, |
66 | | - "metadata": {}, |
67 | | - "output_type": "display_data" |
68 | | - } |
69 | | - ], |
| 39 | + "outputs": [], |
70 | 40 | "source": [ |
71 | 41 | "import pandas as pd\n", |
72 | 42 | "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
|
83 | 53 | }, |
84 | 54 | { |
85 | 55 | "cell_type": "code", |
86 | | - "execution_count": 28, |
| 56 | + "execution_count": null, |
87 | 57 | "metadata": {}, |
88 | | - "outputs": [ |
89 | | - { |
90 | | - "data": { |
91 | | - "application/vnd.jupyter.widget-view+json": { |
92 | | - "model_id": "", |
93 | | - "version_major": 2, |
94 | | - "version_minor": 0 |
95 | | - }, |
96 | | - "text/plain": [ |
97 | | - "DataGrid(base_column_size=150, default_renderer=TextRenderer(background_color=VegaExpr(value=\"cell.value[1] ==…" |
98 | | - ] |
99 | | - }, |
100 | | - "metadata": {}, |
101 | | - "output_type": "display_data" |
102 | | - } |
103 | | - ], |
| 58 | + "outputs": [], |
104 | 59 | "source": [ |
105 | 60 | "import pandas as pd\n", |
106 | 61 | "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
|
117 | 72 | }, |
118 | 73 | { |
119 | 74 | "cell_type": "code", |
120 | | - "execution_count": 37, |
| 75 | + "execution_count": null, |
121 | 76 | "metadata": {}, |
122 | | - "outputs": [ |
123 | | - { |
124 | | - "data": { |
125 | | - "application/vnd.jupyter.widget-view+json": { |
126 | | - "model_id": "89275c595316461eadbbb89797fa2cce", |
127 | | - "version_major": 2, |
128 | | - "version_minor": 0 |
129 | | - }, |
130 | | - "text/plain": [ |
131 | | - "DataGrid(base_column_size=150, default_renderer=TextRenderer(background_color=VegaExpr(value=\"cell.value[1] ==…" |
132 | | - ] |
133 | | - }, |
134 | | - "metadata": {}, |
135 | | - "output_type": "display_data" |
136 | | - } |
137 | | - ], |
| 77 | + "outputs": [], |
138 | 78 | "source": [ |
139 | 79 | "import pandas as pd\n", |
140 | 80 | "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
|
157 | 97 | }, |
158 | 98 | { |
159 | 99 | "cell_type": "code", |
160 | | - "execution_count": 29, |
| 100 | + "execution_count": null, |
161 | 101 | "metadata": { |
162 | 102 | "scrolled": false |
163 | 103 | }, |
164 | | - "outputs": [ |
165 | | - { |
166 | | - "data": { |
167 | | - "application/vnd.jupyter.widget-view+json": { |
168 | | - "model_id": "93307ccc70b0495cb6311f9c588a52b3", |
169 | | - "version_major": 2, |
170 | | - "version_minor": 0 |
171 | | - }, |
172 | | - "text/plain": [ |
173 | | - "DataGrid(base_column_size=300, base_row_size=30, default_renderer=TextRenderer(), header_renderer=None, layout…" |
174 | | - ] |
175 | | - }, |
176 | | - "metadata": {}, |
177 | | - "output_type": "display_data" |
178 | | - } |
179 | | - ], |
| 104 | + "outputs": [], |
180 | 105 | "source": [ |
181 | 106 | "# Imports\n", |
182 | 107 | "import json\n", |
|
198 | 123 | "\n", |
199 | 124 | "# Formatting the values in column 1 based on the value of the silbing row in column 2\n", |
200 | 125 | "def format_based_on_other_column(cell):\n", |
201 | | - " return 'green' if cell.metadata.data['Column 1'] > 0.0 else 'yellow'\n", |
| 126 | + " return 'green' if cell.metadata.data['Column 2'] > 0.0 else 'yellow'\n", |
202 | 127 | "\n", |
203 | 128 | "column1_formatting = TextRenderer(\n", |
204 | 129 | " text_color='black',\n", |
|
223 | 148 | }, |
224 | 149 | { |
225 | 150 | "cell_type": "code", |
226 | | - "execution_count": 30, |
| 151 | + "execution_count": null, |
227 | 152 | "metadata": {}, |
228 | | - "outputs": [ |
229 | | - { |
230 | | - "data": { |
231 | | - "application/vnd.jupyter.widget-view+json": { |
232 | | - "model_id": "6665f2c0fe7d40b4a2a7d136b5b858e1", |
233 | | - "version_major": 2, |
234 | | - "version_minor": 0 |
235 | | - }, |
236 | | - "text/plain": [ |
237 | | - "DataGrid(base_column_size=90, default_renderer=TextRenderer(background_color=Expr(value='(((cell.value > -0) &…" |
238 | | - ] |
239 | | - }, |
240 | | - "metadata": {}, |
241 | | - "output_type": "display_data" |
242 | | - } |
243 | | - ], |
| 153 | + "outputs": [], |
244 | 154 | "source": [ |
245 | 155 | "import ipydatagrid as ipg\n", |
246 | 156 | "import pandas as pd\n", |
|
269 | 179 | }, |
270 | 180 | { |
271 | 181 | "cell_type": "code", |
272 | | - "execution_count": 31, |
| 182 | + "execution_count": null, |
273 | 183 | "metadata": {}, |
274 | | - "outputs": [ |
275 | | - { |
276 | | - "data": { |
277 | | - "application/vnd.jupyter.widget-view+json": { |
278 | | - "model_id": "a8d18e6910a74f3ea9cfa3dfb7ec21d5", |
279 | | - "version_major": 2, |
280 | | - "version_minor": 0 |
281 | | - }, |
282 | | - "text/plain": [ |
283 | | - "DataGrid(base_column_size=300, base_row_size=30, default_renderer=TextRenderer(), header_renderer=None, layout…" |
284 | | - ] |
285 | | - }, |
286 | | - "metadata": {}, |
287 | | - "output_type": "display_data" |
288 | | - } |
289 | | - ], |
| 184 | + "outputs": [], |
290 | 185 | "source": [ |
291 | 186 | "def format_based_on_other_column(cell):\n", |
292 | 187 | " return 'green' if cell.column == 0 and cell.metadata.data['Signal'] == \"Buy\" else 'red'\n", |
|
315 | 210 | }, |
316 | 211 | { |
317 | 212 | "cell_type": "code", |
318 | | - "execution_count": 32, |
| 213 | + "execution_count": null, |
319 | 214 | "metadata": {}, |
320 | | - "outputs": [ |
321 | | - { |
322 | | - "data": { |
323 | | - "application/vnd.jupyter.widget-view+json": { |
324 | | - "model_id": "6b70839957b74d79a79818c94ca8654c", |
325 | | - "version_major": 2, |
326 | | - "version_minor": 0 |
327 | | - }, |
328 | | - "text/plain": [ |
329 | | - "DataGrid(base_column_size=300, base_row_size=30, default_renderer=TextRenderer(), header_renderer=None, layout…" |
330 | | - ] |
331 | | - }, |
332 | | - "metadata": {}, |
333 | | - "output_type": "display_data" |
334 | | - } |
335 | | - ], |
| 215 | + "outputs": [], |
336 | 216 | "source": [ |
337 | 217 | "import json\n", |
338 | 218 | "\n", |
|
0 commit comments