@@ -383,18 +383,6 @@ impl fmt::Display for Rational {
383383 }
384384}
385385
386- // This implementation has been deprecated. Use Rational::to_f64 instead.
387- impl From < Rational > for f64 {
388- #[ inline]
389- fn from ( r : Rational ) -> f64 { r. to_f64 ( ) }
390- }
391-
392- // This implementation has been deprecated. Use Rational::to_f32 instead.
393- impl From < Rational > for f32 {
394- #[ inline]
395- fn from ( r : Rational ) -> f32 { r. to_f32 ( ) }
396- }
397-
398386/// A signed rational number, which is a pair of 32-bit signed integers.
399387#[ derive( Copy , Clone ) ]
400388pub struct SRational { pub num : i32 , pub denom : i32 }
@@ -434,18 +422,6 @@ impl fmt::Display for SRational {
434422 }
435423}
436424
437- // This implementation has been deprecated. Use SRational::to_f64 instead.
438- impl From < SRational > for f64 {
439- #[ inline]
440- fn from ( r : SRational ) -> f64 { r. to_f64 ( ) }
441- }
442-
443- // This implementation has been deprecated. Use SRational::to_f32 instead.
444- impl From < SRational > for f32 {
445- #[ inline]
446- fn from ( r : SRational ) -> f32 { r. to_f32 ( ) }
447- }
448-
449425// Only u32 or i32 are expected for T.
450426fn fmt_rational_sub < T > ( f : & mut fmt:: Formatter , num : u32 , denom : T )
451427 -> String where T : fmt:: Display {
@@ -974,30 +950,30 @@ mod tests {
974950 #[ test]
975951 fn ratioanl_f64 ( ) {
976952 use std:: { f64, u32} ;
977- assert_eq ! ( f64 :: from ( Rational :: from( ( 1 , 2 ) ) ) , 0.5 ) ;
978- assert_eq ! ( f64 :: from ( Rational :: from( ( 1 , u32 :: MAX ) ) ) ,
953+ assert_eq ! ( Rational :: from( ( 1 , 2 ) ) . to_f64 ( ) , 0.5 ) ;
954+ assert_eq ! ( Rational :: from( ( 1 , u32 :: MAX ) ) . to_f64 ( ) ,
979955 2.3283064370807974e-10 ) ;
980- assert_eq ! ( f64 :: from ( Rational :: from( ( u32 :: MAX , 1 ) ) ) ,
956+ assert_eq ! ( Rational :: from( ( u32 :: MAX , 1 ) ) . to_f64 ( ) ,
981957 u32 :: MAX as f64 ) ;
982- assert_eq ! ( f64 :: from ( Rational :: from( ( u32 :: MAX - 1 , u32 :: MAX ) ) ) ,
958+ assert_eq ! ( Rational :: from( ( u32 :: MAX - 1 , u32 :: MAX ) ) . to_f64 ( ) ,
983959 0.9999999997671694 ) ;
984- assert_eq ! ( f64 :: from ( Rational :: from( ( u32 :: MAX , u32 :: MAX - 1 ) ) ) ,
960+ assert_eq ! ( Rational :: from( ( u32 :: MAX , u32 :: MAX - 1 ) ) . to_f64 ( ) ,
985961 1.0000000002328306 ) ;
986- assert_eq ! ( f64 :: from ( Rational :: from( ( 1 , 0 ) ) ) , f64 :: INFINITY ) ;
987- assert ! ( f64 :: from ( Rational :: from( ( 0 , 0 ) ) ) . is_nan( ) ) ;
962+ assert_eq ! ( Rational :: from( ( 1 , 0 ) ) . to_f64 ( ) , f64 :: INFINITY ) ;
963+ assert ! ( Rational :: from( ( 0 , 0 ) ) . to_f64 ( ) . is_nan( ) ) ;
988964
989- assert_eq ! ( f64 :: from ( SRational :: from( ( 1 , 2 ) ) ) , 0.5 ) ;
990- assert_eq ! ( f64 :: from ( SRational :: from( ( -1 , 2 ) ) ) , -0.5 ) ;
991- assert_eq ! ( f64 :: from ( SRational :: from( ( 1 , -2 ) ) ) , -0.5 ) ;
992- assert_eq ! ( f64 :: from ( SRational :: from( ( -1 , -2 ) ) ) , 0.5 ) ;
993- assert_eq ! ( f64 :: from ( SRational :: from( ( 1 , 0 ) ) ) , f64 :: INFINITY ) ;
994- assert_eq ! ( f64 :: from ( SRational :: from( ( -1 , 0 ) ) ) , f64 :: NEG_INFINITY ) ;
965+ assert_eq ! ( SRational :: from( ( 1 , 2 ) ) . to_f64 ( ) , 0.5 ) ;
966+ assert_eq ! ( SRational :: from( ( -1 , 2 ) ) . to_f64 ( ) , -0.5 ) ;
967+ assert_eq ! ( SRational :: from( ( 1 , -2 ) ) . to_f64 ( ) , -0.5 ) ;
968+ assert_eq ! ( SRational :: from( ( -1 , -2 ) ) . to_f64 ( ) , 0.5 ) ;
969+ assert_eq ! ( SRational :: from( ( 1 , 0 ) ) . to_f64 ( ) , f64 :: INFINITY ) ;
970+ assert_eq ! ( SRational :: from( ( -1 , 0 ) ) . to_f64 ( ) , f64 :: NEG_INFINITY ) ;
995971 }
996972
997973 #[ test]
998974 fn rational_f32 ( ) {
999975 // If num and demon are converted to f32 before the division,
1000976 // the precision is lost in this example.
1001- assert_eq ! ( f32 :: from ( Rational :: from( ( 1 , 16777217 ) ) ) , 5.960464e-8 ) ;
977+ assert_eq ! ( Rational :: from( ( 1 , 16777217 ) ) . to_f32 ( ) , 5.960464e-8 ) ;
1002978 }
1003979}
0 commit comments