-
Notifications
You must be signed in to change notification settings - Fork 102
Open
Description
--n_levels 5 results in:
Traceback (most recent call last):
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 744, in <module>
data_dependent_init(model, args)
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 49, in decorate_no_grad
return func(*args, **kwargs)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 469, in data_dependent_init
model(next(iter(dataloader))[0].requires_grad_(True if args.checkpoint_grads else False).to(args.device))
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward
return self.module(*inputs[0], **kwargs[0])
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 422, in forward
x = self.squeeze(x)
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 252, in forward
x = x.reshape(B, C, H//2, 2, W//2, 2) # factor spatial dim
RuntimeError: shape '[256, 96, 0, 2, 0, 2]' is invalid for input of size 24576
--n_levels 4
Traceback (most recent call last):
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 745, in <module>
train_and_evaluate(model, train_dataloader, test_dataloader, optimizer, writer, args)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 562, in train_and_evaluate
train_epoch(model, train_dataloader, optimizer, writer, epoch, args)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 515, in train_epoch
samples = generate(model, n_samples=4, z_stds=[0., 0.25, 0.7, 1.0])
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 49, in decorate_no_grad
return func(*args, **kwargs)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 551, in generate
sample, _ = model.inverse(batch_size=n_samples, z_std=z_std)
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 437, in inverse
z, sum_logdets = self.gaussianize.inverse(torch.zeros_like(zs[-1]), zs[-1])
File "/home/nsteenbergen/workspace-python/glow-pytorch/normalizing_flows/glow.py", line 309, in inverse
h = self.net(x1) * self.log_scale_factor.exp()
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 345, in forward
return self.conv2d_forward(input, self.weight)
File "/home/nsteenbergen/miniconda3/envs/torch/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 341, in conv2d_forward
return F.conv2d(input, weight, self.bias, self.stride,
RuntimeError: Expected 4-dimensional input for 4-dimensional weight 384 192 3 3, but got 2-dimensional input of size [4, 192] instead
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels