You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: 40_linear_algebra_1/20_vector_dot_cross_product.ipynb
+63-27Lines changed: 63 additions & 27 deletions
Original file line number
Diff line number
Diff line change
@@ -60,11 +60,11 @@
60
60
},
61
61
{
62
62
"cell_type": "markdown",
63
+
"metadata": {},
63
64
"source": [
64
65
"[](https://www.youtube.com/watch?v=WNuIhXo39_k)\n",
65
66
"\n"
66
-
],
67
-
"metadata": {}
67
+
]
68
68
},
69
69
{
70
70
"cell_type": "markdown",
@@ -75,6 +75,15 @@
75
75
"\n"
76
76
]
77
77
},
78
+
{
79
+
"cell_type": "markdown",
80
+
"metadata": {},
81
+
"source": [
82
+
"* Feel free to modify the vector definitions below and re-run the cells to explore how different vectors behave under inner and cross product operations.<br>\n",
83
+
"아래 정의한 벡터는 가능한 예 가운데 하나이므로, 자신의 벡터를 입력하고 해당 노트북을 재실행하여 어떻게 달라지는지 관찰해 보기 바람\n",
84
+
"\n"
85
+
]
86
+
},
78
87
{
79
88
"cell_type": "code",
80
89
"execution_count": null,
@@ -87,11 +96,6 @@
87
96
"\n"
88
97
]
89
98
},
90
-
{
91
-
"cell_type": "markdown",
92
-
"source": [],
93
-
"metadata": {}
94
-
},
95
99
{
96
100
"cell_type": "code",
97
101
"execution_count": null,
@@ -283,6 +287,14 @@
283
287
"\n"
284
288
]
285
289
},
290
+
{
291
+
"cell_type": "markdown",
292
+
"metadata": {},
293
+
"source": [
294
+
"* What happens to the inner product if you change the angle between the vectors?<br>벡터 사잇각이 달라지면 내적에는 어떤 영향을 미치는가?\n",
295
+
"\n"
296
+
]
297
+
},
286
298
{
287
299
"cell_type": "markdown",
288
300
"metadata": {},
@@ -506,6 +518,9 @@
506
518
},
507
519
{
508
520
"cell_type": "code",
521
+
"execution_count": null,
522
+
"metadata": {},
523
+
"outputs": [],
509
524
"source": [
510
525
"import matplotlib.pyplot as plt\n",
511
526
"from mpl_toolkits.mplot3d import Axes3D\n",
@@ -527,13 +542,13 @@
527
542
" if name is not None:\n",
528
543
" ax.text3D(*xyz, name)\n",
529
544
"\n"
530
-
],
531
-
"metadata": {},
532
-
"execution_count": null,
533
-
"outputs": []
545
+
]
534
546
},
535
547
{
536
548
"cell_type": "code",
549
+
"execution_count": null,
550
+
"metadata": {},
551
+
"outputs": [],
537
552
"source": [
538
553
"fig = plt.figure()\n",
539
554
"ax = fig.add_subplot(projection='3d')\n",
@@ -544,10 +559,16 @@
544
559
"\n",
545
560
"ax.grid(True)\n",
546
561
"\n"
547
-
],
562
+
]
563
+
},
564
+
{
565
+
"cell_type": "markdown",
548
566
"metadata": {},
549
-
"execution_count": null,
550
-
"outputs": []
567
+
"source": [
568
+
"* How does the cross product change if you reverse the order of the vectors?<br>외적의 순서를 바꾸면 결과에 어떤 영향이 있는가?\n",
569
+
"* Can you find two vectors whose cross product is the zero vector? What does this mean geometrically?<br>외적을 영벡터로 만드는 두 벡터를 찾을 수 있는가? 기하학적으로는 어떤 의미인가?\n",
570
+
"\n"
571
+
]
551
572
},
552
573
{
553
574
"cell_type": "markdown",
@@ -598,6 +619,9 @@
598
619
},
599
620
{
600
621
"cell_type": "code",
622
+
"execution_count": null,
623
+
"metadata": {},
624
+
"outputs": [],
601
625
"source": [
602
626
"fig = plt.figure()\n",
603
627
"ax = fig.add_subplot(projection='3d')\n",
@@ -608,10 +632,7 @@
608
632
"\n",
609
633
"ax.grid(True)\n",
610
634
"\n"
611
-
],
612
-
"metadata": {},
613
-
"execution_count": null,
614
-
"outputs": []
635
+
]
615
636
},
616
637
{
617
638
"cell_type": "markdown",
@@ -625,7 +646,7 @@
625
646
"cell_type": "markdown",
626
647
"metadata": {},
627
648
"source": [
628
-
"힘 벡터 (10, 10) 의 $\\vec{x'}, \\vec{y'}$ 방향 성분을 각각 구하시오.\n",
649
+
"Try This 1: Given a force vector $\\vec{f}=(10, 10)$, find its components along the directions of the vectors $\\vec{x'}, \\vec{y'}$ directions.<br>힘 벡터 (10, 10) 의 $\\vec{x'}$ and $\\vec{y'}$ 방향 성분을 각각 구하시오.\n",
629
650
"\n"
630
651
]
631
652
},
@@ -642,14 +663,29 @@
642
663
"\n"
643
664
]
644
665
},
666
+
{
667
+
"cell_type": "code",
668
+
"execution_count": null,
669
+
"metadata": {},
670
+
"outputs": [],
671
+
"source": []
672
+
},
645
673
{
646
674
"cell_type": "markdown",
647
675
"metadata": {},
648
676
"source": [
649
-
"힘의 작용점 $\\vec{r}= (1, 1, 1)$인 힘 벡터 $\\vec{f}=(-1, 1, -1)$가 원점에 작용하는 모멘트의 크기와 방향을 구하시오\n",
677
+
"Try This 2: Find the magnitude and direction of the moment produced by a force vector \n",
678
+
"$\\vec{f}=(-1, 1, -1)$ acting at the point $\\vec{r}= (1, 1, 1)$ on the origin.<br>힘의 작용점 $\\vec{r}= (1, 1, 1)$인 힘 벡터 $\\vec{f}=(-1, 1, -1)$가 원점에 작용하는 모멘트의 크기와 방향을 구하시오\n",
0 commit comments