|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## part 1" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": null, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import pixellib\n", |
| 17 | + "from pixellib.semantic import semantic_segmentation\n", |
| 18 | + "from tensorflow.keras.layers import BatchNormalization\n" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 9, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [ |
| 26 | + { |
| 27 | + "name": "stdout", |
| 28 | + "output_type": "stream", |
| 29 | + "text": [ |
| 30 | + "WARNING:tensorflow:6 out of the last 6 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7fb79c373060> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", |
| 31 | + "1/1 [==============================] - 4s 4s/step\n", |
| 32 | + "Processed Image saved successfully in your current working directory.\n" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "data": { |
| 37 | + "text/plain": [ |
| 38 | + "({'class_ids': array([ 0, 15]),\n", |
| 39 | + " 'masks': array([[False, False, False, ..., False, False, False],\n", |
| 40 | + " [False, False, False, ..., False, False, False],\n", |
| 41 | + " [False, False, False, ..., False, False, False],\n", |
| 42 | + " ...,\n", |
| 43 | + " [False, False, False, ..., False, False, False],\n", |
| 44 | + " [False, False, False, ..., False, False, False],\n", |
| 45 | + " [False, False, False, ..., False, False, False]])},\n", |
| 46 | + " array([[[ 0, 0, 0],\n", |
| 47 | + " [ 0, 0, 0],\n", |
| 48 | + " [ 0, 0, 0],\n", |
| 49 | + " ...,\n", |
| 50 | + " [ 0, 0, 0],\n", |
| 51 | + " [ 0, 0, 0],\n", |
| 52 | + " [ 0, 0, 0]],\n", |
| 53 | + " \n", |
| 54 | + " [[ 0, 0, 0],\n", |
| 55 | + " [ 0, 0, 0],\n", |
| 56 | + " [ 0, 0, 0],\n", |
| 57 | + " ...,\n", |
| 58 | + " [ 0, 0, 0],\n", |
| 59 | + " [ 0, 0, 0],\n", |
| 60 | + " [ 0, 0, 0]],\n", |
| 61 | + " \n", |
| 62 | + " [[ 0, 0, 0],\n", |
| 63 | + " [ 0, 0, 0],\n", |
| 64 | + " [ 0, 0, 0],\n", |
| 65 | + " ...,\n", |
| 66 | + " [ 0, 0, 0],\n", |
| 67 | + " [ 0, 0, 0],\n", |
| 68 | + " [ 0, 0, 0]],\n", |
| 69 | + " \n", |
| 70 | + " ...,\n", |
| 71 | + " \n", |
| 72 | + " [[ 0, 0, 0],\n", |
| 73 | + " [76, 76, 76],\n", |
| 74 | + " [76, 76, 76],\n", |
| 75 | + " ...,\n", |
| 76 | + " [76, 76, 76],\n", |
| 77 | + " [76, 76, 76],\n", |
| 78 | + " [76, 76, 76]],\n", |
| 79 | + " \n", |
| 80 | + " [[ 0, 0, 0],\n", |
| 81 | + " [76, 76, 76],\n", |
| 82 | + " [76, 76, 76],\n", |
| 83 | + " ...,\n", |
| 84 | + " [76, 76, 76],\n", |
| 85 | + " [76, 76, 76],\n", |
| 86 | + " [76, 76, 76]],\n", |
| 87 | + " \n", |
| 88 | + " [[ 0, 0, 0],\n", |
| 89 | + " [76, 76, 76],\n", |
| 90 | + " [76, 76, 76],\n", |
| 91 | + " ...,\n", |
| 92 | + " [76, 76, 76],\n", |
| 93 | + " [76, 76, 76],\n", |
| 94 | + " [76, 76, 76]]], dtype=uint8))" |
| 95 | + ] |
| 96 | + }, |
| 97 | + "execution_count": 9, |
| 98 | + "metadata": {}, |
| 99 | + "output_type": "execute_result" |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "segment_image = semantic_segmentation()\n", |
| 104 | + "segment_image.load_pascalvoc_model(\"deeplabv3_xception_tf_dim_ordering_tf_kernels.h5\")\n", |
| 105 | + "segment_image.segmentAsPascalvoc(\"./images/dark1.jpg\", output_image_name = \"./images/newDark1.jpg\",overlay=True)" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "segment_image = semantic_segmentation()\n", |
| 115 | + "segment_image.load_pascalvoc_model(\"deeplabv3_xception_tf_dim_ordering_tf_kernels.h5\")\n", |
| 116 | + "segment_image.segmentAsPascalvoc(\"./images/dark2.jpg\", output_image_name = \"./images/newDark2.jpg\")" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": null, |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [], |
| 124 | + "source": [ |
| 125 | + "segment_image = semantic_segmentation()\n", |
| 126 | + "segment_image.load_pascalvoc_model(\"deeplabv3_xception_tf_dim_ordering_tf_kernels.h5\")\n", |
| 127 | + "segment_image.segmentAsPascalvoc(\"./images/horse.jpg\", output_image_name = \"./images/newHorse.jpg\")" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "segment_image = semantic_segmentation()\n", |
| 137 | + "segment_image.load_pascalvoc_model(\"deeplabv3_xception_tf_dim_ordering_tf_kernels.h5\")\n", |
| 138 | + "segment_image.segmentAsPascalvoc(\"./images/cycle.jpg\", output_image_name = \"./images/newCycle.jpg\", overlay = True)" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "markdown", |
| 143 | + "metadata": {}, |
| 144 | + "source": [ |
| 145 | + "## part 2" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "import pixellib\n", |
| 155 | + "from pixellib.semantic import semantic_segmentation\n", |
| 156 | + "import cv2\n" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [], |
| 164 | + "source": [ |
| 165 | + "segment_image = semantic_segmentation()\n", |
| 166 | + "segment_image.load_pascalvoc_model(\"pascal.h5\")\n", |
| 167 | + "output, segmap = segment_image.segmentAsPascalvoc(\"sample1.jpg\")\n", |
| 168 | + "cv2.imwrite(\".jpg\", output)\n", |
| 169 | + "print(output.shape)" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "markdown", |
| 174 | + "metadata": {}, |
| 175 | + "source": [ |
| 176 | + "## part 3" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": null, |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "import pixellib\n", |
| 186 | + "from pixellib.semantic import semantic_segmentation\n", |
| 187 | + "import cv2\n", |
| 188 | + "\n", |
| 189 | + "segment_image = semantic_segmentation()\n", |
| 190 | + "segment_image.load_pascalvoc_model(\"pascal.h5\")\n", |
| 191 | + "output, segmap = segment_image.segmentAsPascalvoc(\"./images/horse.png\")\n", |
| 192 | + "cv2.imwrite(\"./images/dog.jpg\", output)\n", |
| 193 | + "print(output.shape)" |
| 194 | + ] |
| 195 | + } |
| 196 | + ], |
| 197 | + "metadata": { |
| 198 | + "kernelspec": { |
| 199 | + "display_name": "venv", |
| 200 | + "language": "python", |
| 201 | + "name": "python3" |
| 202 | + }, |
| 203 | + "language_info": { |
| 204 | + "codemirror_mode": { |
| 205 | + "name": "ipython", |
| 206 | + "version": 3 |
| 207 | + }, |
| 208 | + "file_extension": ".py", |
| 209 | + "mimetype": "text/x-python", |
| 210 | + "name": "python", |
| 211 | + "nbconvert_exporter": "python", |
| 212 | + "pygments_lexer": "ipython3", |
| 213 | + "version": "3.11.0rc1" |
| 214 | + } |
| 215 | + }, |
| 216 | + "nbformat": 4, |
| 217 | + "nbformat_minor": 2 |
| 218 | +} |
0 commit comments