@@ -8,29 +8,32 @@ require(data.table)
88
99extract.titan.taxa <-
1010 function (titan.out ,
11- p.val.cutoff = 0.05 ,
11+ purity.cutoff = 0.9 ,
12+ reliability.cutoff = 0.9 ,
1213 taxa.label.name = " Genus" ) {
1314 titan.out <- titan.out
1415
15- titan.out.p.val <- titan.out $ sppmax %> %
16+ titan.out.filtered <- titan.out $ sppmax %> %
1617 as.data.frame() %> %
1718 rownames_to_column()
1819
19- titan.out.p.val <-
20- titan.out.p.val [titan.out.p.val $ obsiv.prob < = p.val. cutoff, ]
21- titan.out.p.val <-
22- titan.out.p.val [order( titan.out.p.val $ zscore , decreasing = T ), ]
23- titan.out.p.val <-
24- mutate(titan.out.p.val , zgrp = ifelse(maxgrp == 1 , " z-" , " z+" ))
20+ titan.out.filtered <-
21+ titan.out.filtered [titan.out.filtered $ purity > = purity. cutoff &
22+ titan.out.filtered $ reliability > = reliability.cutoff , ]
23+ titan.out.filtered <-
24+ titan.out.filtered [order( titan.out.filtered $ zscore , decreasing = T ), ] % > %
25+ mutate(zgrp = ifelse(maxgrp == 1 , " z-" , " z+" ))
2526
2627
2728 titan.out.taxonomy.summary <-
28- group_by(titan.out.p.val , zgrp , rowname ) %> %
29+ group_by(titan.out.filtered , zgrp , rowname ) %> %
2930 summarise(
3031 mean.zscore = mean(zscore ),
3132 mean.purity = mean(purity ),
3233 mean.reliability = mean(reliability ),
33- median.zmedian = median(z.median )
34+ mean.zenv.cp = mean(zenv.cp ),
35+ mean.5pct.cp = mean(`5%` ),
36+ mean.95pct.cp = mean(`95%` )
3437 )
3538
3639
@@ -41,7 +44,9 @@ extract.titan.taxa <-
4144 " Mean Z Score" ,
4245 " Mean Purity" ,
4346 " Mean Reliability" ,
44- " Median Z Median Value"
47+ " Mean Env CP z-max" ,
48+ " Mean 5% CP" ,
49+ " Mean 95% CP"
4550 )
4651
4752 return (ungroup(titan.out.taxonomy.summary ))
@@ -53,29 +58,36 @@ extract.titan.taxa <-
5358
5459# # For use with NGS data, could be made to work with phyloseq etc.
5560
61+ # titan.out = I5CL.titan.pctN
62+ # taxonomy.table = raw_dada2_taxa
63+
64+
5665extract.titan.taxa.NGS <-
5766 function (titan.out ,
5867 taxonomy.table ,
5968 taxonomy.table.merge = " taxa.label.unique" ,
6069 taxa.level = Genus ,
61- p.val.cutoff = 0.05 ,
70+ purity.cutoff = 0.90 ,
71+ reliability.cutoff = 0.90 ,
6272 taxa.label.name = " taxa.label.unique" ,
6373 label = label ) {
6474 titan.out <- titan.out
6575 taxa.level <- enquo(taxa.level )
6676 label <- enquo(label )
6777 taxonomy.table <- taxonomy.table
6878
69- titan.out.p.val <- titan.out $ sppmax %> %
79+ titan.out.filtered <- titan.out $ sppmax %> %
7080 as.data.frame()
71- titan.out.p.val [, taxa.label.name ] <- rownames(titan.out.p.val )
72- titan.out.p.val <-
73- titan.out.p.val [titan.out.p.val $ obsiv.prob < = p.val.cutoff , ]
74- titan.out.p.val <-
75- titan.out.p.val [order(titan.out.p.val $ zscore , decreasing = T ), ]
76- titan.out.p.val <-
81+ titan.out.filtered [, taxa.label.name ] <-
82+ rownames(titan.out.filtered )
83+ titan.out.filtered <-
84+ titan.out.filtered [titan.out.filtered $ purity > = purity.cutoff &
85+ titan.out.filtered $ reliability > = reliability.cutoff , ]
86+ titan.out.filtered <-
87+ titan.out.filtered [order(titan.out.filtered $ zscore , decreasing = T ), ]
88+ titan.out.filtered <-
7789 merge(
78- titan.out.p.val ,
90+ titan.out.filtered ,
7991 taxonomy.table ,
8092 by.x = taxa.label.name ,
8193 by.y = taxonomy.table.merge ,
@@ -85,23 +97,31 @@ extract.titan.taxa.NGS <-
8597
8698
8799 titan.out.taxonomy.summary <-
88- group_by(titan.out.p.val , zgrp , !! taxa.level ) %> %
100+ group_by(titan.out.filtered , zgrp , !! taxa.level ) %> %
89101 summarise(
90102 mean.zscore = mean(zscore ),
91103 mean.purity = mean(purity ),
92104 mean.reliability = mean(reliability ),
93- median.zmedian = median(z.median ),
105+ mean.zenv.cp = mean(zenv.cp ),
106+ mean.5pct.cp = mean(`5%` ),
107+ mean.95pct.cp = mean(`95%` ),
94108 count = n(),
95109 svs = paste(unique(!! label ), collapse = " ;" )
96110 )
97111
98112 colnames(titan.out.taxonomy.summary )[1 ] <-
99113 " Decreasing/Increasing Z Taxa"
100- colnames(titan.out.taxonomy.summary )[3 : 7 ] <- c(" Mean Z Score" ,
101- " Mean Purity" ,
102- " Mean Reliability" ,
103- " Median Z Median Value" ,
104- " Count" )
114+ colnames(titan.out.taxonomy.summary )[3 : ncol(titan.out.taxonomy.summary )] <-
115+ c(
116+ " Mean Z Score" ,
117+ " Mean Purity" ,
118+ " Mean Reliability" ,
119+ " Mean Env CP z-max" ,
120+ " Mean 5% CP" ,
121+ " Mean 95% CP" ,
122+ " Count" ,
123+ " All SVs or OTUs"
124+ )
105125
106126 return (ungroup(titan.out.taxonomy.summary ))
107127
@@ -193,7 +213,7 @@ cell.filler <-
193213 paste0(" Z-score: " ,
194214 z.score.text ,
195215 " ; CP: " ,
196- temp.row [, " Median Z Median Value " ] %> % round(round.val ))
216+ temp.row [, " Mean Env CP z-max " ] %> % round(round.val ))
197217
198218 taxa.comparison.table [j , i + 2 ] <- text
199219
@@ -273,7 +293,7 @@ combine.titan.results <-
273293 taxa.col.name = taxa.col.name ,
274294 table.col.names = table.col.names ,
275295 z.score.pct.cutoff = z.score.pct.cutoff ,
276- round.val = 3
296+ round.val = round.val
277297 )
278298
279299 summary.table.z2 <-
@@ -284,7 +304,7 @@ combine.titan.results <-
284304 taxa.col.name = taxa.col.name ,
285305 table.col.names = table.col.names ,
286306 z.score.pct.cutoff = z.score.pct.cutoff ,
287- round.val = 3
307+ round.val = round.val
288308 )
289309
290310
0 commit comments