| 
 | 1 | +# Executorch Benchmark Tooling  | 
 | 2 | + | 
 | 3 | +A  library providing tools for fetching, processing, and analyzing ExecutorchBenchmark data from the HUD Open API. This tooling helps compare performance metrics between private and public devices with identical settings.  | 
 | 4 | + | 
 | 5 | +## Table of Contents  | 
 | 6 | + | 
 | 7 | +- [Overview](#overview)  | 
 | 8 | +- [Installation](#installation)  | 
 | 9 | +- [Tools](#tools)  | 
 | 10 | +  - [get_benchmark_analysis_data.py](#get_benchmark_analysis_datapy)  | 
 | 11 | +    - [Quick Start](#quick-start)  | 
 | 12 | +    - [Command Line Options](#command-line-options)  | 
 | 13 | +    - [Example Usage](#example-usage)  | 
 | 14 | +    - [Working with Output Files](#working-with-output-files-csv-and-excel)  | 
 | 15 | +    - [Python API Usage](#python-api-usage)  | 
 | 16 | +- [Running Unit Tests](#running-unit-tests)  | 
 | 17 | + | 
 | 18 | +## Overview  | 
 | 19 | + | 
 | 20 | +The Executorch Benchmark Tooling provides a suite of utilities designed to:  | 
 | 21 | + | 
 | 22 | +- Fetch benchmark data from HUD Open API for specified time ranges  | 
 | 23 | +- Clean and process data by filtering out failures  | 
 | 24 | +- Compare metrics between private and public devices with matching configurations  | 
 | 25 | +- Generate analysis reports in various formats (CSV, Excel, JSON)  | 
 | 26 | +- Support filtering by device pools, backends, and models  | 
 | 27 | + | 
 | 28 | +This tooling is particularly useful for performance analysis, regression testing, and cross-device comparisons.  | 
 | 29 | + | 
 | 30 | +## Installation  | 
 | 31 | + | 
 | 32 | +Install dependencies:  | 
 | 33 | + | 
 | 34 | +```bash  | 
 | 35 | +pip install -r requirements.txt  | 
 | 36 | +```  | 
 | 37 | + | 
 | 38 | +## Tools  | 
 | 39 | + | 
 | 40 | +### get_benchmark_analysis_data.py  | 
 | 41 | + | 
 | 42 | +This script is mainly used to generate analysis data comparing private devices with public devices using the same settings.  | 
 | 43 | + | 
 | 44 | +It fetches benchmark data from HUD Open API for a specified time range, cleans the data by removing entries with FAILURE indicators, and retrieves all private device metrics along with equivalent public device metrics based on matching [model, backend, device_pool_names, arch] configurations. Users can filter the data by specifying private device_pool_names, backends, and models.  | 
 | 45 | + | 
 | 46 | +#### Quick Start  | 
 | 47 | + | 
 | 48 | +```bash  | 
 | 49 | +# generate excel sheets for all private devices with public devices using the same settings  | 
 | 50 | +python3 .ci/scripts/benchmark_tooling/get_benchmark_analysis_data.py \  | 
 | 51 | +  --startTime "2025-06-11T00:00:00" \  | 
 | 52 | +  --endTime "2025-06-17T18:00:00" \  | 
 | 53 | +  --outputType "excel"  | 
 | 54 | + | 
 | 55 | +# generate the benchmark stability analysis  | 
 | 56 | +python3 .ci/scripts/benchmark_tooling/analyze_benchmark_stability.py \  | 
 | 57 | +--primary-file private.xlsx \  | 
 | 58 | +--reference-file public.xlsx  | 
 | 59 | +```  | 
 | 60 | + | 
 | 61 | +#### Command Line Options  | 
 | 62 | + | 
 | 63 | +##### Basic Options:  | 
 | 64 | +- `--startTime`: Start time in ISO format (e.g., "2025-06-11T00:00:00") (required)  | 
 | 65 | +- `--endTime`: End time in ISO format (e.g., "2025-06-17T18:00:00") (required)  | 
 | 66 | +- `--env`: Choose environment ("local" or "prod", default: "prod")  | 
 | 67 | +- `--no-silent`: Show processing logs (default: only show results & minimum logging)  | 
 | 68 | + | 
 | 69 | +##### Output Options:  | 
 | 70 | +- `--outputType`: Choose output format (default: "print")  | 
 | 71 | +  - `print`: Display results in console  | 
 | 72 | +  - `json`: Generate JSON file  | 
 | 73 | +  - `df`: Display results in DataFrame format: `{'private': List[{'groupInfo':Dict,'df': DF},...],'public':List[{'groupInfo':Dict,'df': DF}]`  | 
 | 74 | +  - `excel`: Generate Excel files with multiple sheets, the field in first row and first column contains the JSON string of the raw metadata  | 
 | 75 | +  - `csv`: Generate CSV files in separate folders, the field in first row and first column contains the JSON string of the raw metadata  | 
 | 76 | +- `--outputDir`: Directory to save output files (default: current directory)  | 
 | 77 | + | 
 | 78 | +##### Filtering Options:  | 
 | 79 | + | 
 | 80 | +- `--device-pools`: Filter by private device pool names (e.g., "samsung-galaxy-s22-5g", "samsung-galaxy-s22plus-5g")  | 
 | 81 | +- `--backends`: Filter by specific backend names (e.g.,"xnnpack_q8")  | 
 | 82 | +- `--models`: Filter by specific model names (e.g., "mv3", "meta-llama-llama-3.2-1b-instruct-qlora-int4-eo8")  | 
 | 83 | + | 
 | 84 | +#### Example Usage  | 
 | 85 | + | 
 | 86 | +Filter by multiple private device pools and models:  | 
 | 87 | +```bash  | 
 | 88 | +# This fetches all private table data for models 'llama-3.2-1B' and 'mv3'  | 
 | 89 | +python3 get_benchmark_analysis_data.py \  | 
 | 90 | +  --startTime "2025-06-01T00:00:00" \  | 
 | 91 | +  --endTime "2025-06-11T00:00:00" \  | 
 | 92 | +  --device-pools 'apple_iphone_15_private' 'samsung_s22_private' \  | 
 | 93 | +  --models 'meta-llama/Llama-3.2-1B-Instruct-SpinQuant_INT4_EO8' 'mv3'  | 
 | 94 | +```  | 
 | 95 | + | 
 | 96 | +Filter by specific device pool and models:  | 
 | 97 | +```bash  | 
 | 98 | +# This fetches all private iPhone table data for models 'llama-3.2-1B' and 'mv3',  | 
 | 99 | +# and associated public iPhone data  | 
 | 100 | +python3 get_benchmark_analysis_data.py \  | 
 | 101 | +  --startTime "2025-06-01T00:00:00" \  | 
 | 102 | +  --endTime "2025-06-11T00:00:00" \  | 
 | 103 | +  --device-pools 'apple_iphone_15_private' \  | 
 | 104 | +  --models 'meta-llama/Llama-3.2-1B-Instruct-SpinQuant_INT4_EO8' 'mv3'  | 
 | 105 | +```  | 
 | 106 | + | 
 | 107 | +#### Working with Output Files CSV and Excel  | 
 | 108 | + | 
 | 109 | +You can use methods in `common.py` to convert the file data back to DataFrame format. These methods read the first row in CSV/Excel files and return results with the format `list of {"groupInfo":DICT, "df":df.Dataframe{}}`.  | 
 | 110 | + | 
 | 111 | +```python  | 
 | 112 | +import logging  | 
 | 113 | +logging.basicConfig(level=logging.INFO)  | 
 | 114 | +from .ci.scripts.benchmark_tooling.common import read_all_csv_with_metadata, read_excel_with_json_header  | 
 | 115 | + | 
 | 116 | +# For CSV files (assuming the 'private' folder is in the current directory)  | 
 | 117 | +folder_path = './private'  | 
 | 118 | +res = read_all_csv_with_metadata(folder_path)  | 
 | 119 | +logging.info(res)  | 
 | 120 | + | 
 | 121 | +# For Excel files (assuming the Excel file is in the current directory)  | 
 | 122 | +file_path = "./private.xlsx"  | 
 | 123 | +res = read_excel_with_json_header(file_path)  | 
 | 124 | +logging.info(res)  | 
 | 125 | +```  | 
 | 126 | + | 
 | 127 | +#### Python API Usage  | 
 | 128 | + | 
 | 129 | +To use the benchmark fetcher in your own scripts:  | 
 | 130 | + | 
 | 131 | +```python  | 
 | 132 | +from .ci.scripts.benchmark_tooling.get_benchmark_analysis_data import ExecutorchBenchmarkFetcher  | 
 | 133 | + | 
 | 134 | +# Initialize the fetcher  | 
 | 135 | +fetcher = ExecutorchBenchmarkFetcher(env="prod", disable_logging=False)  | 
 | 136 | + | 
 | 137 | +# Fetch data for a specific time range  | 
 | 138 | +fetcher.run(  | 
 | 139 | +    start_time="2025-06-11T00:00:00",  | 
 | 140 | +    end_time="2025-06-17T18:00:00"  | 
 | 141 | +)  | 
 | 142 | + | 
 | 143 | +# Get results in different formats  | 
 | 144 | +# As DataFrames  | 
 | 145 | +df_results = fetcher.to_df()  | 
 | 146 | + | 
 | 147 | +# Export to Excel  | 
 | 148 | +fetcher.to_excel(output_dir="./results")  | 
 | 149 | + | 
 | 150 | +# Export to CSV  | 
 | 151 | +fetcher.to_csv(output_dir="./results")  | 
 | 152 | + | 
 | 153 | +# Export to JSON  | 
 | 154 | +json_path = fetcher.to_json(output_dir="./results")  | 
 | 155 | + | 
 | 156 | +# Get raw dictionary results  | 
 | 157 | +dict_results = fetcher.to_dict()  | 
 | 158 | + | 
 | 159 | +# Use the output_data method for flexible output  | 
 | 160 | +results = fetcher.output_data(output_type="excel", output_dir="./results")  | 
 | 161 | +```  | 
 | 162 | + | 
 | 163 | +## Running Unit Tests  | 
 | 164 | + | 
 | 165 | +The benchmark tooling includes unit tests to ensure functionality.  | 
 | 166 | + | 
 | 167 | +### Using pytest for unit tests  | 
 | 168 | + | 
 | 169 | +```bash  | 
 | 170 | +# From the executorch root directory  | 
 | 171 | +pytest -c /dev/null .ci/scripts/tests/test_get_benchmark_analysis_data.py  | 
 | 172 | +```  | 
0 commit comments