|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <executorch/extension/llm/custom_ops/op_update_quantized_cache.h> |
| 10 | + |
| 11 | +#include <executorch/runtime/core/exec_aten/util/dim_order_util.h> |
| 12 | +// @lint-ignore CLANGTIDY facebook-unused-include-check |
| 13 | +#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| 14 | + |
| 15 | +#include <executorch/extension/kernel_util/make_boxed_from_unboxed_functor.h> |
| 16 | + |
| 17 | +namespace torch { |
| 18 | +namespace executor { |
| 19 | + |
| 20 | +namespace native { |
| 21 | + |
| 22 | +namespace { |
| 23 | +bool validate_cache_params( |
| 24 | + const Tensor& quantized_value, |
| 25 | + const Tensor& quantized_cache, |
| 26 | + int64_t start_pos, |
| 27 | + int64_t seq_length) { |
| 28 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 29 | + quantized_cache.dim() == 4, "quantized cache must be a 4D tensor"); |
| 30 | + |
| 31 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 32 | + quantized_value.dim() == 4, "quantized_value must be a 4D tensor"); |
| 33 | + |
| 34 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 35 | + start_pos < quantized_cache.size(1), |
| 36 | + "start_pos must be less than cache size at dim 1"); |
| 37 | + |
| 38 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 39 | + (start_pos + seq_length) <= quantized_cache.size(1), |
| 40 | + "start_post + seq_length must be less than max seq length supported by cache." |
| 41 | + "start pos: %" PRId64 ", seq_length: %" PRId64 |
| 42 | + "." |
| 43 | + "cache size: %zd", |
| 44 | + start_pos, |
| 45 | + seq_length, |
| 46 | + quantized_cache.size(1)); |
| 47 | + |
| 48 | + // Make sure they are in contiguous dim order |
| 49 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 50 | + is_contiguous_dim_order( |
| 51 | + quantized_cache.dim_order().data(), quantized_cache.dim()), |
| 52 | + "quantized cache must be in contiguous dim order"); |
| 53 | + |
| 54 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 55 | + is_contiguous_dim_order( |
| 56 | + quantized_value.dim_order().data(), quantized_value.dim()), |
| 57 | + "quantized value must be in contiguous dim order"); |
| 58 | + |
| 59 | + return true; |
| 60 | +} |
| 61 | +} // anonymous namespace |
| 62 | + |
| 63 | +Tensor& update_quantized_cache_out( |
| 64 | + RuntimeContext& ctx, |
| 65 | + const Tensor& value, |
| 66 | + Tensor& cache, |
| 67 | + const int64_t start_pos, |
| 68 | + Tensor& output) { |
| 69 | + (void)ctx; |
| 70 | + int64_t seq_len = value.size(1); |
| 71 | + ET_KERNEL_CHECK( |
| 72 | + ctx, |
| 73 | + validate_cache_params(value, cache, start_pos, seq_len), |
| 74 | + InvalidArgument, |
| 75 | + output); |
| 76 | + |
| 77 | + ET_CHECK_MSG( |
| 78 | + value.size(0) == cache.size(0), |
| 79 | + "projected_value batch size should be equal to the cache batch size."); |
| 80 | + ET_CHECK_MSG( |
| 81 | + value.size(2) == cache.size(2), |
| 82 | + "projected_value number of heads should be equal to the cache number of heads."); |
| 83 | + ET_CHECK_MSG( |
| 84 | + value.size(3) == cache.size(3), |
| 85 | + "projected_value embedding dimension should be equal to the cache embedding dimension."); |
| 86 | + ET_CHECK_MSG( |
| 87 | + value.element_size() == cache.element_size(), |
| 88 | + "projected_value data type size should be equal to the cache data type size."); |
| 89 | + |
| 90 | + ET_CHECK_MSG( |
| 91 | + is_contiguous_dim_order(value.dim_order().data(), value.dim()), |
| 92 | + "projected value must be in contiguous dim order"); |
| 93 | + ET_CHECK_MSG( |
| 94 | + is_contiguous_dim_order(cache.dim_order().data(), cache.dim()), |
| 95 | + "projected value must be in contiguous dim order"); |
| 96 | + |
| 97 | + const void* value_data = value.const_data_ptr(); |
| 98 | + void* cache_data = cache.mutable_data_ptr(); |
| 99 | + |
| 100 | + ET_CHECK_MSG(value_data, "projected_value data is null"); |
| 101 | + ET_CHECK_MSG(cache_data, "cache data is null"); |
| 102 | + |
| 103 | + auto cache_strides = cache.strides(); |
| 104 | + exec_aten::StridesType cache_batch_dim_stride = cache_strides[0]; |
| 105 | + exec_aten::StridesType cache_seq_dim_stride = cache_strides[1]; |
| 106 | + |
| 107 | + auto value_strides = value.strides(); |
| 108 | + exec_aten::StridesType value_batch_dim_stride = value_strides[0]; |
| 109 | + |
| 110 | + exec_aten::SizesType num_bytes_to_copy = |
| 111 | + (value.numel() / value.size(0)) * value.element_size(); |
| 112 | + |
| 113 | + for (int64_t batch_line = 0; batch_line < value.size(0); ++batch_line) { |
| 114 | + exec_aten::SizesType cache_pos_offset = |
| 115 | + (batch_line * cache_batch_dim_stride + |
| 116 | + start_pos * cache_seq_dim_stride) * |
| 117 | + cache.element_size(); |
| 118 | + exec_aten::SizesType value_pos_offset = |
| 119 | + (batch_line * value_batch_dim_stride) * cache.element_size(); |
| 120 | + |
| 121 | + std::memcpy( |
| 122 | + (uint8_t*)cache_data + cache_pos_offset, |
| 123 | + (uint8_t*)value_data + value_pos_offset, |
| 124 | + num_bytes_to_copy); |
| 125 | + } |
| 126 | + |
| 127 | + // Noone uses output. Just a placeholder. |
| 128 | + return output; |
| 129 | +} |
| 130 | +} // namespace native |
| 131 | +} // namespace executor |
| 132 | +} // namespace torch |
| 133 | + |
| 134 | +// Really this is just an inplace tensor update op |
| 135 | +// which makes assumption on the rank of a tensor, |
| 136 | +// and the dim order (memory layout) of the tensor. |
| 137 | +// Furthermore assumes that the indexing is along |
| 138 | +// sequence dimension (dim 1) of the tensor. |
| 139 | +// In later diffs will rename this to update_cache. |
| 140 | +EXECUTORCH_LIBRARY( |
| 141 | + llama, |
| 142 | + "update_quantized_cache.out", |
| 143 | + torch::executor::native::update_quantized_cache_out); |
0 commit comments