|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "0", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import cf_xarray # noqa: F401\n", |
| 11 | + "import lonboard\n", |
| 12 | + "import xarray as xr\n", |
| 13 | + "\n", |
| 14 | + "from grid_indexing import infer_cell_geometries, infer_grid_type\n", |
| 15 | + "\n", |
| 16 | + "xr.set_options(keep_attrs=True)" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "id": "1", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "def center_longitude(ds):\n", |
| 27 | + " lon_name = ds.cf.coordinates[\"longitude\"][0]\n", |
| 28 | + " longitude = (ds[lon_name] + 180) % 360 - 180\n", |
| 29 | + " return ds.assign_coords({lon_name: longitude})" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": null, |
| 35 | + "id": "2", |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "def visualize_grid(geoms, data, cmap=\"viridis\", alpha=0.8):\n", |
| 40 | + " from arro3.core import Array, ChunkedArray, Schema, Table\n", |
| 41 | + " from lonboard.colormap import apply_continuous_cmap\n", |
| 42 | + " from matplotlib import colormaps\n", |
| 43 | + " from matplotlib.colors import Normalize\n", |
| 44 | + "\n", |
| 45 | + " array = Array.from_arrow(geoms)\n", |
| 46 | + " data_arrow = ChunkedArray([Array.from_numpy(data)])\n", |
| 47 | + " arrays = {\"geometry\": array, \"data\": data_arrow}\n", |
| 48 | + " fields = [array.field.with_name(name) for name, array in arrays.items()]\n", |
| 49 | + " schema = Schema(fields)\n", |
| 50 | + "\n", |
| 51 | + " table = Table.from_arrays(list(arrays.values()), schema=schema)\n", |
| 52 | + "\n", |
| 53 | + " normalizer = Normalize(vmin=data.min(skipna=True), vmax=data.max(skipna=True))\n", |
| 54 | + " normalized = normalizer(data.data)\n", |
| 55 | + " colormap = colormaps[cmap]\n", |
| 56 | + " colors = apply_continuous_cmap(normalized, colormap, alpha=alpha)\n", |
| 57 | + "\n", |
| 58 | + " return lonboard.SolidPolygonLayer(table=table, filled=True, get_fill_color=colors)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": null, |
| 64 | + "id": "3", |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [], |
| 67 | + "source": [ |
| 68 | + "preprocessors = {\n", |
| 69 | + " \"air_temperature\": lambda ds: ds[\"air\"].isel(time=0).stack(cells=[\"lon\", \"lat\"]),\n", |
| 70 | + " \"rasm\": lambda ds: ds[\"Tair\"].isel(time=0).stack(cells=[\"y\", \"x\"]),\n", |
| 71 | + " \"ROMS_example\": lambda ds: ds[\"salt\"]\n", |
| 72 | + " .isel(ocean_time=0, s_rho=0)\n", |
| 73 | + " .stack(cells=[\"eta_rho\", \"xi_rho\"]),\n", |
| 74 | + "}" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": null, |
| 80 | + "id": "4", |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "datasets = preprocessors.keys()\n", |
| 85 | + "cmaps = {\"ROMS_example\": \"viridis\", \"air_temperature\": \"plasma\", \"rasm\": \"cividis\"}\n", |
| 86 | + "\n", |
| 87 | + "dss = {\n", |
| 88 | + " name: xr.tutorial.open_dataset(name).pipe(center_longitude)\n", |
| 89 | + " for name in preprocessors\n", |
| 90 | + "}\n", |
| 91 | + "\n", |
| 92 | + "print(\n", |
| 93 | + " \"grid types:\",\n", |
| 94 | + " *[f\"{name}: {infer_grid_type(ds)}\" for name, ds in dss.items()],\n", |
| 95 | + " sep=\"\\n\",\n", |
| 96 | + ")\n", |
| 97 | + "\n", |
| 98 | + "layers = [\n", |
| 99 | + " visualize_grid(\n", |
| 100 | + " infer_cell_geometries(ds), ds.pipe(preprocessors[name]), cmap=cmaps[name]\n", |
| 101 | + " )\n", |
| 102 | + " for name, ds in dss.items()\n", |
| 103 | + "]\n", |
| 104 | + "\n", |
| 105 | + "lonboard.Map(layers)" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "id": "5", |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [], |
| 114 | + "source": [] |
| 115 | + } |
| 116 | + ], |
| 117 | + "metadata": { |
| 118 | + "language_info": { |
| 119 | + "codemirror_mode": { |
| 120 | + "name": "ipython", |
| 121 | + "version": 3 |
| 122 | + }, |
| 123 | + "file_extension": ".py", |
| 124 | + "mimetype": "text/x-python", |
| 125 | + "name": "python", |
| 126 | + "nbconvert_exporter": "python", |
| 127 | + "pygments_lexer": "ipython3", |
| 128 | + "version": "3.12.8" |
| 129 | + } |
| 130 | + }, |
| 131 | + "nbformat": 4, |
| 132 | + "nbformat_minor": 5 |
| 133 | +} |
0 commit comments