@@ -107,7 +107,7 @@ def _build(self, input_shape):
107107 self ._attention_layernorm = keras .layers .LayerNormalization ()
108108 self ._feedforward_layernorm = keras .layers .LayerNormalization ()
109109
110- self ._attentiondropout = keras .layers .Dropout (rate = self .dropout )
110+ self ._attention_dropout = keras .layers .Dropout (rate = self .dropout )
111111
112112 self ._intermediate_dense = keras .layers .Dense (
113113 self .intermediate_dim ,
@@ -120,15 +120,15 @@ def _build(self, input_shape):
120120 kernel_initializer = self .kernel_initializer ,
121121 bias_initializer = self .bias_initializer ,
122122 )
123- self ._outputdropout = keras .layers .Dropout (rate = self .dropout )
123+ self ._output_dropout = keras .layers .Dropout (rate = self .dropout )
124124
125125 def _add_and_norm (self , input1 , input2 , norm_layer ):
126126 return norm_layer (input1 + input2 )
127127
128128 def _feed_forward (self , input ):
129129 x = self ._intermediate_dense (input )
130130 x = self ._output_dense (x )
131- return self ._outputdropout (x )
131+ return self ._output_dropout (x )
132132
133133 def call (self , inputs , padding_mask = None , attention_mask = None ):
134134 """Forward pass of the TransformerEncoder.
@@ -161,7 +161,7 @@ def call(self, inputs, padding_mask=None, attention_mask=None):
161161 attended = self ._multi_head_attention_layer (
162162 inputs , inputs , inputs , attention_mask = mask
163163 )
164- attended = self ._attentiondropout (attended )
164+ attended = self ._attention_dropout (attended )
165165 attended = self ._add_and_norm (
166166 inputs ,
167167 attended ,
0 commit comments