|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone |
| 4 | +from keras_hub.src.utils.preset_utils import load_json |
| 5 | + |
| 6 | +backbone_cls = SmolLM3Backbone |
| 7 | + |
| 8 | + |
| 9 | +def convert_backbone_config(transformers_config): |
| 10 | + return { |
| 11 | + "vocabulary_size": transformers_config["vocab_size"], |
| 12 | + "hidden_dim": transformers_config["hidden_size"], |
| 13 | + "num_layers": transformers_config["num_hidden_layers"], |
| 14 | + "num_attention_heads": transformers_config["num_attention_heads"], |
| 15 | + "num_key_value_heads": transformers_config["num_key_value_heads"], |
| 16 | + "intermediate_dim": transformers_config["intermediate_size"], |
| 17 | + "layer_norm_epsilon": transformers_config[ |
| 18 | + "rms_norm_eps" |
| 19 | + ], # Using rms_norm_eps as layer_norm_epsilon |
| 20 | + "max_position_embeddings": transformers_config[ |
| 21 | + "max_position_embeddings" |
| 22 | + ], |
| 23 | + "rope_theta": transformers_config["rope_theta"], |
| 24 | + # partial_rotary_factor is not explicitly in config.json |
| 25 | + # but is inherited from the default value in the `_compute_default_rope_parameters()` |
| 26 | + # function |
| 27 | + "partial_rotary_factor": 1.0, |
| 28 | + "attention_bias": transformers_config["attention_bias"], |
| 29 | + "attention_dropout": transformers_config["attention_dropout"], |
| 30 | + "rope_layer_enabled_list": transformers_config["no_rope_layers"], |
| 31 | + "layer_types": transformers_config["layer_types"], |
| 32 | + "mlp_bias": transformers_config["mlp_bias"], |
| 33 | + "num_hidden_layers": transformers_config[ |
| 34 | + "num_hidden_layers" |
| 35 | + ], # Redundant with num_layers, but kept for completeness |
| 36 | + } |
| 37 | + |
| 38 | + |
| 39 | +def convert_weights(backbone, loader, transformers_config): |
| 40 | + loader.port_weight( |
| 41 | + keras_variable=backbone.get_layer("token_embedding").embeddings, |
| 42 | + hf_weight_key="model.embed_tokens.weight", |
| 43 | + ) |
| 44 | + if not backbone.tie_word_embeddings: |
| 45 | + loader.port_weight( |
| 46 | + keras_variable=backbone.get_layer( |
| 47 | + "token_embedding" |
| 48 | + ).reverse_embeddings, |
| 49 | + hf_weight_key="lm_head.weight", |
| 50 | + # rearrange_pattern="b a -> a b", |
| 51 | + hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)), |
| 52 | + ) |
| 53 | + |
| 54 | + def transpose_and_reshape(x, shape): |
| 55 | + return np.reshape(np.transpose(x), shape) |
| 56 | + |
| 57 | + for i in range(backbone.num_layers): |
| 58 | + decoder_layer = backbone.get_layer(f"transformer_layer_{i}") |
| 59 | + |
| 60 | + # Input layernorm |
| 61 | + loader.port_weight( |
| 62 | + keras_variable=decoder_layer._self_attention_layernorm.scale, |
| 63 | + hf_weight_key=f"model.layers.{i}.input_layernorm.weight", |
| 64 | + ) |
| 65 | + |
| 66 | + # Attention layers |
| 67 | + |
| 68 | + ## Query |
| 69 | + loader.port_weight( |
| 70 | + keras_variable=decoder_layer._self_attention_layer._query_dense.kernel, |
| 71 | + hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight", |
| 72 | + hook_fn=transpose_and_reshape, |
| 73 | + ) |
| 74 | + loader.port_weight( |
| 75 | + keras_variable=decoder_layer._self_attention_layer._query_dense_layer_norm.scale, |
| 76 | + hf_weight_key=f"model.layers.{i}.self_attn.q_norm.weight", |
| 77 | + ) |
| 78 | + ## Key |
| 79 | + loader.port_weight( |
| 80 | + keras_variable=decoder_layer._self_attention_layer._key_dense.kernel, |
| 81 | + hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight", |
| 82 | + hook_fn=transpose_and_reshape, |
| 83 | + ) |
| 84 | + loader.port_weight( |
| 85 | + keras_variable=decoder_layer._self_attention_layer._key_dense_layer_norm.scale, |
| 86 | + hf_weight_key=f"model.layers.{i}.self_attn.k_norm.weight", |
| 87 | + ) |
| 88 | + ## Value |
| 89 | + loader.port_weight( |
| 90 | + keras_variable=decoder_layer._self_attention_layer._value_dense.kernel, |
| 91 | + hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight", |
| 92 | + hook_fn=transpose_and_reshape, |
| 93 | + ) |
| 94 | + ## Output |
| 95 | + loader.port_weight( |
| 96 | + keras_variable=decoder_layer._self_attention_layer._output_dense.kernel, |
| 97 | + hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight", |
| 98 | + # rearrange_patterns="c (a b) -> a b c", |
| 99 | + # rearrange_dims={"a": backbone.num_query_heads}, |
| 100 | + hook_fn=transpose_and_reshape, |
| 101 | + ) |
| 102 | + |
| 103 | + # MLP layers |
| 104 | + loader.port_weight( |
| 105 | + keras_variable=decoder_layer._feedforward_intermediate_dense.kernel, |
| 106 | + hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight", |
| 107 | + # rearrange_patterns="b a -> a b", |
| 108 | + hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)), |
| 109 | + ) |
| 110 | + loader.port_weight( |
| 111 | + keras_variable=decoder_layer._feedforward_output_dense.kernel, |
| 112 | + hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight", |
| 113 | + # rearrange_patterns="b a -> a b", |
| 114 | + hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)), |
| 115 | + ) |
| 116 | + loader.port_weight( |
| 117 | + keras_variable=decoder_layer._feedforward_gate_dense.kernel, |
| 118 | + hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight", |
| 119 | + # rearrange_patterns="b a -> a b", |
| 120 | + hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)), |
| 121 | + ) |
| 122 | + |
| 123 | + # Feedforward layernorm |
| 124 | + loader.port_weight( |
| 125 | + keras_variable=decoder_layer._feedforward_layernorm.scale, |
| 126 | + hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight", |
| 127 | + ) |
| 128 | + |
| 129 | + # Final normalization layer |
| 130 | + loader.port_weight( |
| 131 | + keras_variable=backbone.get_layer("sequence_output_layernorm").scale, |
| 132 | + hf_weight_key="model.norm.weight", |
| 133 | + ) |
| 134 | + |
| 135 | + return backbone |
| 136 | + |
| 137 | + |
| 138 | +def convert_tokenizer(cls, preset, **kwargs): |
| 139 | + tokenizer_config = load_json(preset, "tokenizer.json") |
| 140 | + vocab = tokenizer_config["model"]["vocab"] |
| 141 | + merges = tokenizer_config["model"]["merges"] |
| 142 | + merges = [" ".join(item) for item in merges] |
| 143 | + |
| 144 | + # Load all special tokens with the exception of "reserved" ones. |
| 145 | + special_tokens = set() |
| 146 | + for token in tokenizer_config["added_tokens"]: |
| 147 | + if not token["content"].startswith("<|reserved_special_token_"): |
| 148 | + vocab[token["content"]] = token["id"] |
| 149 | + special_tokens.add(token["content"]) |
| 150 | + |
| 151 | + kwargs.update( |
| 152 | + { |
| 153 | + "unsplittable_tokens": list(special_tokens), |
| 154 | + } |
| 155 | + ) |
| 156 | + |
| 157 | + return cls(vocabulary=vocab, merges=merges, **kwargs) |
0 commit comments