|
161 | 161 | "colab_type": "text" |
162 | 162 | }, |
163 | 163 | "source": [ |
164 | | - "You can use the utility `tf.keras.preprocessing.text_dataset_from_directory` to\n", |
| 164 | + "You can use the utility `tf.keras.utils.text_dataset_from_directory` to\n", |
165 | 165 | "generate a labeled `tf.data.Dataset` object from a set of text files on disk filed\n", |
166 | 166 | " into class-specific folders.\n", |
167 | 167 | "\n", |
|
190 | 190 | "outputs": [], |
191 | 191 | "source": [ |
192 | 192 | "batch_size = 32\n", |
193 | | - "raw_train_ds = tf.keras.preprocessing.text_dataset_from_directory(\n", |
| 193 | + "raw_train_ds = tf.keras.utils.text_dataset_from_directory(\n", |
194 | 194 | " \"aclImdb/train\",\n", |
195 | 195 | " batch_size=batch_size,\n", |
196 | 196 | " validation_split=0.2,\n", |
197 | 197 | " subset=\"training\",\n", |
198 | 198 | " seed=1337,\n", |
199 | 199 | ")\n", |
200 | | - "raw_val_ds = tf.keras.preprocessing.text_dataset_from_directory(\n", |
| 200 | + "raw_val_ds = tf.keras.utils.text_dataset_from_directory(\n", |
201 | 201 | " \"aclImdb/train\",\n", |
202 | 202 | " batch_size=batch_size,\n", |
203 | 203 | " validation_split=0.2,\n", |
204 | 204 | " subset=\"validation\",\n", |
205 | 205 | " seed=1337,\n", |
206 | 206 | ")\n", |
207 | | - "raw_test_ds = tf.keras.preprocessing.text_dataset_from_directory(\n", |
| 207 | + "raw_test_ds = tf.keras.utils.text_dataset_from_directory(\n", |
208 | 208 | " \"aclImdb/test\", batch_size=batch_size\n", |
209 | 209 | ")\n", |
210 | 210 | "\n", |
|
0 commit comments