Skip to content

Commit e40fab4

Browse files
authored
Fix imports for {text,image}_dataset_from_directory (#1181)
* Fix typos in "Getting Started Guide" * Fix import for preprocessing.{text,image}_dataset_from_directory * Remove changes to "KerasNLP getting started" from other PR
1 parent b24bc4e commit e40fab4

23 files changed

+48
-48
lines changed

examples/generative/dcgan_overriding_train_step.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@
3838
Create a dataset from our folder, and rescale the images to the [0-1] range:
3939
"""
4040

41-
dataset = keras.preprocessing.image_dataset_from_directory(
41+
dataset = keras.utils.image_dataset_from_directory(
4242
"celeba_gan", label_mode=None, image_size=(64, 64), batch_size=32
4343
)
4444
dataset = dataset.map(lambda x: x / 255.0)

examples/generative/ipynb/dcgan_overriding_train_step.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@
8787
},
8888
"outputs": [],
8989
"source": [
90-
"dataset = keras.preprocessing.image_dataset_from_directory(\n",
90+
"dataset = keras.utils.image_dataset_from_directory(\n",
9191
" \"celeba_gan\", label_mode=None, image_size=(64, 64), batch_size=32\n",
9292
")\n",
9393
"dataset = dataset.map(lambda x: x / 255.0)\n",

examples/generative/ipynb/stylegan.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -166,7 +166,7 @@
166166
"\n",
167167
"# Create a dataset from our folder, and rescale the images to the [0-1] range:\n",
168168
"\n",
169-
"ds_train = keras.preprocessing.image_dataset_from_directory(\n",
169+
"ds_train = keras.utils.image_dataset_from_directory(\n",
170170
" \"celeba_gan\", label_mode=None, image_size=(64, 64), batch_size=32\n",
171171
")\n",
172172
"ds_train = ds_train.map(lambda x: x / 255.0)\n",

examples/generative/md/dcgan_overriding_train_step.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Create a dataset from our folder, and rescale the images to the [0-1] range:
4646

4747

4848
```python
49-
dataset = keras.preprocessing.image_dataset_from_directory(
49+
dataset = keras.utils.image_dataset_from_directory(
5050
"celeba_gan", label_mode=None, image_size=(64, 64), batch_size=32
5151
)
5252
dataset = dataset.map(lambda x: x / 255.0)

examples/generative/md/stylegan.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ with ZipFile("celeba_gan/data.zip", "r") as zipobj:
8282

8383
# Create a dataset from our folder, and rescale the images to the [0-1] range:
8484

85-
ds_train = keras.preprocessing.image_dataset_from_directory(
85+
ds_train = keras.utils.image_dataset_from_directory(
8686
"celeba_gan", label_mode=None, image_size=(64, 64), batch_size=32
8787
)
8888
ds_train = ds_train.map(lambda x: x / 255.0)

examples/generative/stylegan.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ def log2(x):
7878

7979
# Create a dataset from our folder, and rescale the images to the [0-1] range:
8080

81-
ds_train = keras.preprocessing.image_dataset_from_directory(
81+
ds_train = keras.utils.image_dataset_from_directory(
8282
"celeba_gan", label_mode=None, image_size=(64, 64), batch_size=32
8383
)
8484
ds_train = ds_train.map(lambda x: x / 255.0)

examples/nlp/ipynb/text_classification_from_scratch.ipynb

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -161,7 +161,7 @@
161161
"colab_type": "text"
162162
},
163163
"source": [
164-
"You can use the utility `tf.keras.preprocessing.text_dataset_from_directory` to\n",
164+
"You can use the utility `tf.keras.utils.text_dataset_from_directory` to\n",
165165
"generate a labeled `tf.data.Dataset` object from a set of text files on disk filed\n",
166166
" into class-specific folders.\n",
167167
"\n",
@@ -190,21 +190,21 @@
190190
"outputs": [],
191191
"source": [
192192
"batch_size = 32\n",
193-
"raw_train_ds = tf.keras.preprocessing.text_dataset_from_directory(\n",
193+
"raw_train_ds = tf.keras.utils.text_dataset_from_directory(\n",
194194
" \"aclImdb/train\",\n",
195195
" batch_size=batch_size,\n",
196196
" validation_split=0.2,\n",
197197
" subset=\"training\",\n",
198198
" seed=1337,\n",
199199
")\n",
200-
"raw_val_ds = tf.keras.preprocessing.text_dataset_from_directory(\n",
200+
"raw_val_ds = tf.keras.utils.text_dataset_from_directory(\n",
201201
" \"aclImdb/train\",\n",
202202
" batch_size=batch_size,\n",
203203
" validation_split=0.2,\n",
204204
" subset=\"validation\",\n",
205205
" seed=1337,\n",
206206
")\n",
207-
"raw_test_ds = tf.keras.preprocessing.text_dataset_from_directory(\n",
207+
"raw_test_ds = tf.keras.utils.text_dataset_from_directory(\n",
208208
" \"aclImdb/test\", batch_size=batch_size\n",
209209
")\n",
210210
"\n",

examples/nlp/md/text_classification_from_scratch.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,7 @@ We are only interested in the `pos` and `neg` subfolders, so let's delete the re
9191
!rm -r aclImdb/train/unsup
9292
```
9393

94-
You can use the utility `tf.keras.preprocessing.text_dataset_from_directory` to
94+
You can use the utility `tf.keras.utils.text_dataset_from_directory` to
9595
generate a labeled `tf.data.Dataset` object from a set of text files on disk filed
9696
into class-specific folders.
9797

@@ -113,21 +113,21 @@ get have no overlap.
113113

114114
```python
115115
batch_size = 32
116-
raw_train_ds = tf.keras.preprocessing.text_dataset_from_directory(
116+
raw_train_ds = tf.keras.utils.text_dataset_from_directory(
117117
"aclImdb/train",
118118
batch_size=batch_size,
119119
validation_split=0.2,
120120
subset="training",
121121
seed=1337,
122122
)
123-
raw_val_ds = tf.keras.preprocessing.text_dataset_from_directory(
123+
raw_val_ds = tf.keras.utils.text_dataset_from_directory(
124124
"aclImdb/train",
125125
batch_size=batch_size,
126126
validation_split=0.2,
127127
subset="validation",
128128
seed=1337,
129129
)
130-
raw_test_ds = tf.keras.preprocessing.text_dataset_from_directory(
130+
raw_test_ds = tf.keras.utils.text_dataset_from_directory(
131131
"aclImdb/test", batch_size=batch_size
132132
)
133133

examples/nlp/text_classification_from_scratch.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@
6767
"""
6868

6969
"""
70-
You can use the utility `tf.keras.preprocessing.text_dataset_from_directory` to
70+
You can use the utility `tf.keras.utils.text_dataset_from_directory` to
7171
generate a labeled `tf.data.Dataset` object from a set of text files on disk filed
7272
into class-specific folders.
7373
@@ -89,21 +89,21 @@
8989
"""
9090

9191
batch_size = 32
92-
raw_train_ds = tf.keras.preprocessing.text_dataset_from_directory(
92+
raw_train_ds = tf.keras.utils.text_dataset_from_directory(
9393
"aclImdb/train",
9494
batch_size=batch_size,
9595
validation_split=0.2,
9696
subset="training",
9797
seed=1337,
9898
)
99-
raw_val_ds = tf.keras.preprocessing.text_dataset_from_directory(
99+
raw_val_ds = tf.keras.utils.text_dataset_from_directory(
100100
"aclImdb/train",
101101
batch_size=batch_size,
102102
validation_split=0.2,
103103
subset="validation",
104104
seed=1337,
105105
)
106-
raw_test_ds = tf.keras.preprocessing.text_dataset_from_directory(
106+
raw_test_ds = tf.keras.utils.text_dataset_from_directory(
107107
"aclImdb/test", batch_size=batch_size
108108
)
109109

examples/vision/image_classification_from_scratch.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@
8787
image_size = (180, 180)
8888
batch_size = 128
8989

90-
train_ds, val_ds = tf.keras.preprocessing.image_dataset_from_directory(
90+
train_ds, val_ds = tf.keras.utils.image_dataset_from_directory(
9191
"PetImages",
9292
validation_split=0.2,
9393
subset="both",

0 commit comments

Comments
 (0)