|
| 1 | +from keras.src.api_export import keras_export |
| 2 | +from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 |
| 3 | + BaseImagePreprocessingLayer, |
| 4 | +) |
| 5 | +from keras.src.random.seed_generator import SeedGenerator |
| 6 | + |
| 7 | + |
| 8 | +@keras_export("keras.layers.RandomShear") |
| 9 | +class RandomShear(BaseImagePreprocessingLayer): |
| 10 | + """A preprocessing layer that randomly applies shear transformations to |
| 11 | + images. |
| 12 | +
|
| 13 | + This layer shears the input images along the x-axis and/or y-axis by a |
| 14 | + randomly selected factor within the specified range. The shear |
| 15 | + transformation is applied to each image independently in a batch. Empty |
| 16 | + regions created during the transformation are filled according to the |
| 17 | + `fill_mode` and `fill_value` parameters. |
| 18 | +
|
| 19 | + Args: |
| 20 | + x_factor: A tuple of two floats. For each augmented image, a value |
| 21 | + is sampled from the provided range. If a float is passed, the |
| 22 | + range is interpreted as `(0, x_factor)`. Values represent a |
| 23 | + percentage of the image to shear over. For example, 0.3 shears |
| 24 | + pixels up to 30% of the way across the image. All provided values |
| 25 | + should be positive. |
| 26 | + y_factor: A tuple of two floats. For each augmented image, a value |
| 27 | + is sampled from the provided range. If a float is passed, the |
| 28 | + range is interpreted as `(0, y_factor)`. Values represent a |
| 29 | + percentage of the image to shear over. For example, 0.3 shears |
| 30 | + pixels up to 30% of the way across the image. All provided values |
| 31 | + should be positive. |
| 32 | + interpolation: Interpolation mode. Supported values: `"nearest"`, |
| 33 | + `"bilinear"`. |
| 34 | + fill_mode: Points outside the boundaries of the input are filled |
| 35 | + according to the given mode. Available methods are `"constant"`, |
| 36 | + `"nearest"`, `"wrap"` and `"reflect"`. Defaults to `"constant"`. |
| 37 | + - `"reflect"`: `(d c b a | a b c d | d c b a)` |
| 38 | + The input is extended by reflecting about the edge of the |
| 39 | + last pixel. |
| 40 | + - `"constant"`: `(k k k k | a b c d | k k k k)` |
| 41 | + The input is extended by filling all values beyond the edge |
| 42 | + with the same constant value `k` specified by `fill_value`. |
| 43 | + - `"wrap"`: `(a b c d | a b c d | a b c d)` |
| 44 | + The input is extended by wrapping around to the opposite edge. |
| 45 | + - `"nearest"`: `(a a a a | a b c d | d d d d)` |
| 46 | + The input is extended by the nearest pixel. |
| 47 | + Note that when using torch backend, `"reflect"` is redirected to |
| 48 | + `"mirror"` `(c d c b | a b c d | c b a b)` because torch does |
| 49 | + not support `"reflect"`. |
| 50 | + Note that torch backend does not support `"wrap"`. |
| 51 | + fill_value: A float representing the value to be filled outside the |
| 52 | + boundaries when `fill_mode="constant"`. |
| 53 | + seed: Integer. Used to create a random seed. |
| 54 | + """ |
| 55 | + |
| 56 | + _USE_BASE_FACTOR = False |
| 57 | + _FACTOR_BOUNDS = (0, 1) |
| 58 | + _FACTOR_VALIDATION_ERROR = ( |
| 59 | + "The `factor` argument should be a number (or a list of two numbers) " |
| 60 | + "in the range [0, 1.0]. " |
| 61 | + ) |
| 62 | + _SUPPORTED_FILL_MODE = ("reflect", "wrap", "constant", "nearest") |
| 63 | + _SUPPORTED_INTERPOLATION = ("nearest", "bilinear") |
| 64 | + |
| 65 | + def __init__( |
| 66 | + self, |
| 67 | + x_factor=0.0, |
| 68 | + y_factor=0.0, |
| 69 | + interpolation="bilinear", |
| 70 | + fill_mode="reflect", |
| 71 | + fill_value=0.0, |
| 72 | + data_format=None, |
| 73 | + seed=None, |
| 74 | + **kwargs, |
| 75 | + ): |
| 76 | + super().__init__(data_format=data_format, **kwargs) |
| 77 | + self.x_factor = self._set_factor_with_name(x_factor, "x_factor") |
| 78 | + self.y_factor = self._set_factor_with_name(y_factor, "y_factor") |
| 79 | + |
| 80 | + if fill_mode not in self._SUPPORTED_FILL_MODE: |
| 81 | + raise NotImplementedError( |
| 82 | + f"Unknown `fill_mode` {fill_mode}. Expected of one " |
| 83 | + f"{self._SUPPORTED_FILL_MODE}." |
| 84 | + ) |
| 85 | + if interpolation not in self._SUPPORTED_INTERPOLATION: |
| 86 | + raise NotImplementedError( |
| 87 | + f"Unknown `interpolation` {interpolation}. Expected of one " |
| 88 | + f"{self._SUPPORTED_INTERPOLATION}." |
| 89 | + ) |
| 90 | + |
| 91 | + self.fill_mode = fill_mode |
| 92 | + self.fill_value = fill_value |
| 93 | + self.interpolation = interpolation |
| 94 | + self.seed = seed |
| 95 | + self.generator = SeedGenerator(seed) |
| 96 | + self.supports_jit = False |
| 97 | + |
| 98 | + def _set_factor_with_name(self, factor, factor_name): |
| 99 | + if isinstance(factor, (tuple, list)): |
| 100 | + if len(factor) != 2: |
| 101 | + raise ValueError( |
| 102 | + self._FACTOR_VALIDATION_ERROR |
| 103 | + + f"Received: {factor_name}={factor}" |
| 104 | + ) |
| 105 | + self._check_factor_range(factor[0]) |
| 106 | + self._check_factor_range(factor[1]) |
| 107 | + lower, upper = sorted(factor) |
| 108 | + elif isinstance(factor, (int, float)): |
| 109 | + self._check_factor_range(factor) |
| 110 | + factor = abs(factor) |
| 111 | + lower, upper = [-factor, factor] |
| 112 | + else: |
| 113 | + raise ValueError( |
| 114 | + self._FACTOR_VALIDATION_ERROR |
| 115 | + + f"Received: {factor_name}={factor}" |
| 116 | + ) |
| 117 | + return lower, upper |
| 118 | + |
| 119 | + def _check_factor_range(self, input_number): |
| 120 | + if input_number > 1.0 or input_number < 0.0: |
| 121 | + raise ValueError( |
| 122 | + self._FACTOR_VALIDATION_ERROR |
| 123 | + + f"Received: input_number={input_number}" |
| 124 | + ) |
| 125 | + |
| 126 | + def get_random_transformation(self, data, training=True, seed=None): |
| 127 | + if not training: |
| 128 | + return None |
| 129 | + |
| 130 | + if isinstance(data, dict): |
| 131 | + images = data["images"] |
| 132 | + else: |
| 133 | + images = data |
| 134 | + |
| 135 | + images_shape = self.backend.shape(images) |
| 136 | + if len(images_shape) == 3: |
| 137 | + batch_size = 1 |
| 138 | + else: |
| 139 | + batch_size = images_shape[0] |
| 140 | + |
| 141 | + if seed is None: |
| 142 | + seed = self._get_seed_generator(self.backend._backend) |
| 143 | + |
| 144 | + invert = self.backend.random.uniform( |
| 145 | + minval=0, |
| 146 | + maxval=1, |
| 147 | + shape=[batch_size, 1], |
| 148 | + seed=seed, |
| 149 | + dtype=self.compute_dtype, |
| 150 | + ) |
| 151 | + invert = self.backend.numpy.where( |
| 152 | + invert > 0.5, |
| 153 | + -self.backend.numpy.ones_like(invert), |
| 154 | + self.backend.numpy.ones_like(invert), |
| 155 | + ) |
| 156 | + |
| 157 | + shear_y = self.backend.random.uniform( |
| 158 | + minval=self.y_factor[0], |
| 159 | + maxval=self.y_factor[1], |
| 160 | + shape=[batch_size, 1], |
| 161 | + seed=seed, |
| 162 | + dtype=self.compute_dtype, |
| 163 | + ) |
| 164 | + shear_x = self.backend.random.uniform( |
| 165 | + minval=self.x_factor[0], |
| 166 | + maxval=self.x_factor[1], |
| 167 | + shape=[batch_size, 1], |
| 168 | + seed=seed, |
| 169 | + dtype=self.compute_dtype, |
| 170 | + ) |
| 171 | + shear_factor = ( |
| 172 | + self.backend.cast( |
| 173 | + self.backend.numpy.concatenate([shear_x, shear_y], axis=1), |
| 174 | + dtype=self.compute_dtype, |
| 175 | + ) |
| 176 | + * invert |
| 177 | + ) |
| 178 | + return {"shear_factor": shear_factor} |
| 179 | + |
| 180 | + def transform_images(self, images, transformation, training=True): |
| 181 | + images = self.backend.cast(images, self.compute_dtype) |
| 182 | + if training: |
| 183 | + return self._shear_inputs(images, transformation) |
| 184 | + return images |
| 185 | + |
| 186 | + def _shear_inputs(self, inputs, transformation): |
| 187 | + if transformation is None: |
| 188 | + return inputs |
| 189 | + |
| 190 | + inputs_shape = self.backend.shape(inputs) |
| 191 | + unbatched = len(inputs_shape) == 3 |
| 192 | + if unbatched: |
| 193 | + inputs = self.backend.numpy.expand_dims(inputs, axis=0) |
| 194 | + |
| 195 | + shear_factor = transformation["shear_factor"] |
| 196 | + outputs = self.backend.image.affine_transform( |
| 197 | + inputs, |
| 198 | + transform=self._get_shear_matrix(shear_factor), |
| 199 | + interpolation=self.interpolation, |
| 200 | + fill_mode=self.fill_mode, |
| 201 | + fill_value=self.fill_value, |
| 202 | + data_format=self.data_format, |
| 203 | + ) |
| 204 | + |
| 205 | + if unbatched: |
| 206 | + outputs = self.backend.numpy.squeeze(outputs, axis=0) |
| 207 | + return outputs |
| 208 | + |
| 209 | + def _get_shear_matrix(self, shear_factors): |
| 210 | + num_shear_factors = self.backend.shape(shear_factors)[0] |
| 211 | + |
| 212 | + # The shear matrix looks like: |
| 213 | + # [[1 s_x 0] |
| 214 | + # [s_y 1 0] |
| 215 | + # [0 0 1]] |
| 216 | + |
| 217 | + return self.backend.numpy.stack( |
| 218 | + [ |
| 219 | + self.backend.numpy.ones((num_shear_factors,)), |
| 220 | + shear_factors[:, 0], |
| 221 | + self.backend.numpy.zeros((num_shear_factors,)), |
| 222 | + shear_factors[:, 1], |
| 223 | + self.backend.numpy.ones((num_shear_factors,)), |
| 224 | + self.backend.numpy.zeros((num_shear_factors,)), |
| 225 | + self.backend.numpy.zeros((num_shear_factors,)), |
| 226 | + self.backend.numpy.zeros((num_shear_factors,)), |
| 227 | + ], |
| 228 | + axis=1, |
| 229 | + ) |
| 230 | + |
| 231 | + def transform_labels(self, labels, transformation, training=True): |
| 232 | + return labels |
| 233 | + |
| 234 | + def transform_bounding_boxes( |
| 235 | + self, |
| 236 | + bounding_boxes, |
| 237 | + transformation, |
| 238 | + training=True, |
| 239 | + ): |
| 240 | + raise NotImplementedError |
| 241 | + |
| 242 | + def transform_segmentation_masks( |
| 243 | + self, segmentation_masks, transformation, training=True |
| 244 | + ): |
| 245 | + return self.transform_images( |
| 246 | + segmentation_masks, transformation, training=training |
| 247 | + ) |
| 248 | + |
| 249 | + def get_config(self): |
| 250 | + base_config = super().get_config() |
| 251 | + config = { |
| 252 | + "x_factor": self.x_factor, |
| 253 | + "y_factor": self.y_factor, |
| 254 | + "fill_mode": self.fill_mode, |
| 255 | + "interpolation": self.interpolation, |
| 256 | + "seed": self.seed, |
| 257 | + "fill_value": self.fill_value, |
| 258 | + "data_format": self.data_format, |
| 259 | + } |
| 260 | + return {**base_config, **config} |
| 261 | + |
| 262 | + def compute_output_shape(self, input_shape): |
| 263 | + return input_shape |
0 commit comments