|
| 1 | +# KeycardAI Agents SDK |
| 2 | + |
| 3 | +Keycard integration for AI agent frameworks (CrewAI) with secure MCP tool access. |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +The `keycardai-agents` package provides clean integrations between Keycard's secure MCP client and popular agent frameworks. It follows these security principles: |
| 8 | + |
| 9 | +1. **No Token Passing**: Agents never receive raw API tokens |
| 10 | +2. **Fresh Tokens**: Each tool call fetches a fresh token through Keycard |
| 11 | +3. **User Attribution**: All API calls are logged with user identity |
| 12 | +4. **Auth Awareness**: Agents can request authentication when needed |
| 13 | + |
| 14 | +## Installation |
| 15 | + |
| 16 | +```bash |
| 17 | +# For CrewAI support |
| 18 | +pip install keycardai-agents[crewai] |
| 19 | + |
| 20 | +# Or install all extras |
| 21 | +pip install keycardai-agents[all] |
| 22 | +``` |
| 23 | + |
| 24 | +## Quick Start - CrewAI |
| 25 | + |
| 26 | +```python |
| 27 | +import asyncio |
| 28 | +from crewai import Agent, Crew, Task |
| 29 | +from keycardai.agents.crewai_agents import create_client |
| 30 | +from keycardai.mcp.client import Client as MCPClient |
| 31 | + |
| 32 | +async def main(): |
| 33 | + # 1. Configure MCP client to connect to your MCP servers |
| 34 | + mcp_config = { |
| 35 | + "mcpServers": { |
| 36 | + "github": { |
| 37 | + "command": "uvx", |
| 38 | + "args": ["keycardai-mcp-fastmcp", "--project-dir", "~/your-mcp-server"], |
| 39 | + } |
| 40 | + } |
| 41 | + } |
| 42 | + mcp_client = MCPClient(mcp_config) |
| 43 | + |
| 44 | + # 2. Create Keycard CrewAI adapter |
| 45 | + async with create_client(mcp_client) as client: |
| 46 | + # 3. Get Keycard-secured tools (NO TOKENS!) |
| 47 | + tools = await client.get_tools() |
| 48 | + auth_tools = await client.get_auth_tools() |
| 49 | + |
| 50 | + # 4. Create agents with secured tools |
| 51 | + agent = Agent( |
| 52 | + role="GitHub Expert", |
| 53 | + goal="Analyze pull requests", |
| 54 | + backstory=client.get_system_prompt("You are a code review expert"), |
| 55 | + tools=tools + auth_tools, # Keycard-secured tools |
| 56 | + ) |
| 57 | + |
| 58 | + # 5. Define and run tasks |
| 59 | + task = Task( |
| 60 | + description="Analyze PR #123 from repo owner/repo", |
| 61 | + expected_output="Detailed PR analysis", |
| 62 | + agent=agent, |
| 63 | + ) |
| 64 | + |
| 65 | + crew = Crew(agents=[agent], tasks=[task]) |
| 66 | + result = crew.kickoff() |
| 67 | + print(result) |
| 68 | + |
| 69 | +asyncio.run(main()) |
| 70 | +``` |
| 71 | + |
| 72 | +## Architecture |
| 73 | + |
| 74 | +### The Wrong Way (What NOT to Do) |
| 75 | + |
| 76 | +```python |
| 77 | +# ❌ WRONG: Passing tokens directly to agents |
| 78 | +github_token = get_token_from_keycard() # Token fetched once |
| 79 | +agent = Agent( |
| 80 | + role="GitHub Expert", |
| 81 | + tools=create_github_tools(github_token), # Token embedded in tools |
| 82 | +) |
| 83 | +# Problems: |
| 84 | +# - Agent has unfettered access to token |
| 85 | +# - Token can expire during execution |
| 86 | +# - No per-call logging or authorization |
| 87 | +# - Keycard is just an "auth orchestrator" |
| 88 | +``` |
| 89 | + |
| 90 | +### The Right Way (Keycard Integration) |
| 91 | + |
| 92 | +```python |
| 93 | +# ✅ CORRECT: Tools call through MCP client |
| 94 | +async with create_client(mcp_client) as client: |
| 95 | + tools = await client.get_tools() # Tools with MCP client reference |
| 96 | + agent = Agent(role="GitHub Expert", tools=tools) |
| 97 | + # Each tool call: |
| 98 | + # 1. Agent invokes tool |
| 99 | + # 2. Tool calls mcp_client.call_tool() |
| 100 | + # 3. MCP client calls MCP server |
| 101 | + # 4. MCP server requests fresh token from Keycard |
| 102 | + # 5. API call is made with fresh token |
| 103 | + # 6. Call is logged with user attribution |
| 104 | +``` |
| 105 | + |
| 106 | +## Key Components |
| 107 | + |
| 108 | +### CrewAIClient |
| 109 | + |
| 110 | +The main adapter class that wraps an MCP client and provides CrewAI-compatible tools. |
| 111 | + |
| 112 | +```python |
| 113 | +from keycardai.agents.crewai_agents import CrewAIClient, create_client |
| 114 | + |
| 115 | +async with create_client(mcp_client) as client: |
| 116 | + # Get tools from authenticated MCP servers |
| 117 | + tools = await client.get_tools() # List[BaseTool] |
| 118 | + |
| 119 | + # Get authentication request tools |
| 120 | + auth_tools = await client.get_auth_tools() # List[BaseTool] |
| 121 | + |
| 122 | + # Get system prompt with auth context |
| 123 | + prompt = client.get_system_prompt("You are helpful") # str |
| 124 | +``` |
| 125 | + |
| 126 | +### Tool Conversion |
| 127 | + |
| 128 | +MCP tools are automatically converted to CrewAI `BaseTool` instances: |
| 129 | + |
| 130 | +- **Async Execution**: Tools use `async_run()` for async MCP calls |
| 131 | +- **Schema Conversion**: JSON schemas converted to Pydantic models |
| 132 | +- **Error Handling**: Errors are caught and returned as strings |
| 133 | +- **Result Formatting**: MCP results formatted for agent consumption |
| 134 | + |
| 135 | +### Authentication Flow |
| 136 | + |
| 137 | +When an MCP server requires authentication: |
| 138 | + |
| 139 | +1. **Auth Detection**: Client detects pending auth challenges on connect |
| 140 | +2. **Auth Tool**: `request_authentication` tool is added to agent toolset |
| 141 | +3. **Agent Request**: Agent can call the tool when user needs a service |
| 142 | +4. **Auth Handler**: Configurable handler sends auth link to user |
| 143 | +5. **Token Refresh**: After auth, tools automatically use new tokens |
| 144 | + |
| 145 | +```python |
| 146 | +# Custom auth handler example |
| 147 | +from keycardai.agents.crewai_agents import AuthToolHandler |
| 148 | + |
| 149 | +class SlackAuthHandler(AuthToolHandler): |
| 150 | + async def handle_auth_request(self, service, reason, challenge): |
| 151 | + # Send auth link to Slack |
| 152 | + await slack_client.post_message( |
| 153 | + channel=channel_id, |
| 154 | + text=f"Please authorize {service}: {challenge['auth_url']}" |
| 155 | + ) |
| 156 | + return f"Authorization link sent to Slack channel" |
| 157 | + |
| 158 | +async with create_client(mcp_client, auth_tool_handler=SlackAuthHandler()) as client: |
| 159 | + # Auth requests will be sent to Slack |
| 160 | + tools = await client.get_tools() |
| 161 | +``` |
| 162 | + |
| 163 | +## Advanced Usage |
| 164 | + |
| 165 | +### Multi-Agent Crews |
| 166 | + |
| 167 | +```python |
| 168 | +async with create_client(mcp_client) as client: |
| 169 | + tools = await client.get_tools() |
| 170 | + |
| 171 | + # Agent 1: Data fetcher |
| 172 | + fetcher = Agent( |
| 173 | + role="Data Fetcher", |
| 174 | + goal="Fetch information from APIs", |
| 175 | + tools=tools, |
| 176 | + ) |
| 177 | + |
| 178 | + # Agent 2: Analyzer |
| 179 | + analyzer = Agent( |
| 180 | + role="Data Analyzer", |
| 181 | + goal="Analyze fetched data", |
| 182 | + tools=tools, # Same tools, but each call is independently authorized |
| 183 | + ) |
| 184 | + |
| 185 | + # Tasks with context passing |
| 186 | + fetch_task = Task( |
| 187 | + description="Fetch PR #123", |
| 188 | + agent=fetcher, |
| 189 | + ) |
| 190 | + |
| 191 | + analyze_task = Task( |
| 192 | + description="Analyze the PR data", |
| 193 | + agent=analyzer, |
| 194 | + context=[fetch_task], # Uses fetcher's output |
| 195 | + ) |
| 196 | + |
| 197 | + crew = Crew( |
| 198 | + agents=[fetcher, analyzer], |
| 199 | + tasks=[fetch_task, analyze_task], |
| 200 | + ) |
| 201 | + result = crew.kickoff() |
| 202 | +``` |
| 203 | + |
| 204 | +### Custom System Prompts |
| 205 | + |
| 206 | +```python |
| 207 | +async with create_client(mcp_client) as client: |
| 208 | + # Default auth-aware prompt |
| 209 | + default_prompt = client.get_system_prompt("You are helpful") |
| 210 | + |
| 211 | + # Custom auth prompt |
| 212 | + client.auth_prompt = """ |
| 213 | + **IMPORTANT**: Some services need authorization. |
| 214 | + Use the request_authentication tool with clear reasoning. |
| 215 | + """ |
| 216 | + custom_prompt = client.get_system_prompt("You are helpful") |
| 217 | +``` |
| 218 | + |
| 219 | +### Tool Caching |
| 220 | + |
| 221 | +Tools are cached after first load for performance: |
| 222 | + |
| 223 | +```python |
| 224 | +async with create_client(mcp_client) as client: |
| 225 | + tools1 = await client.get_tools() # Fetches from MCP servers |
| 226 | + tools2 = await client.get_tools() # Returns cached tools |
| 227 | + |
| 228 | + # To force refresh, reconnect: |
| 229 | + await mcp_client.disconnect() |
| 230 | + await mcp_client.connect() |
| 231 | + tools3 = await client.get_tools() # Fresh fetch |
| 232 | +``` |
| 233 | + |
| 234 | +## Examples |
| 235 | + |
| 236 | +Complete working examples with multi-agent crews, Keycard-secured API access, no token passing, and auth-aware agents will be added in future releases. |
| 237 | + |
| 238 | +## Comparison with Other Integrations |
| 239 | + |
| 240 | +### LangChain Integration |
| 241 | + |
| 242 | +For LangChain, use the existing `keycardai-mcp` integration: |
| 243 | + |
| 244 | +```python |
| 245 | +from keycardai.mcp.client.integrations import langchain_agents |
| 246 | + |
| 247 | +async with langchain_agents.create_client(mcp_client) as client: |
| 248 | + tools = await client.get_tools() # LangChain StructuredTool objects |
| 249 | + # Use with LangChain agents |
| 250 | +``` |
| 251 | + |
| 252 | +### OpenAI Agents Integration |
| 253 | + |
| 254 | +For OpenAI Agents SDK, use the `keycardai-mcp` integration: |
| 255 | + |
| 256 | +```python |
| 257 | +from keycardai.mcp.client.integrations import openai_agents |
| 258 | + |
| 259 | +async with openai_agents.create_client(mcp_client) as client: |
| 260 | + tools = await client.get_tools() # OpenAI tool schemas |
| 261 | + # Use with OpenAI agents |
| 262 | +``` |
| 263 | + |
| 264 | +## Framework Comparison |
| 265 | + |
| 266 | +| Framework | Package | Tool Format | Agent Type | |
| 267 | +|-----------|---------|-------------|------------| |
| 268 | +| CrewAI | `keycardai-agents[crewai]` | `BaseTool` | Role-based | |
| 269 | +| LangChain | `keycardai-mcp` | `StructuredTool` | Conversational | |
| 270 | +| OpenAI Agents | `keycardai-mcp` | OpenAI schema | Function calling | |
| 271 | + |
| 272 | +## Development |
| 273 | + |
| 274 | +```bash |
| 275 | +# Install in development mode |
| 276 | +cd python-sdk/packages/agents |
| 277 | +pip install -e ".[test]" |
| 278 | + |
| 279 | +# Run tests |
| 280 | +pytest |
| 281 | + |
| 282 | +# Run type checking |
| 283 | +mypy src/keycardai/agents |
| 284 | + |
| 285 | +# Run linting |
| 286 | +ruff check src/keycardai/agents |
| 287 | +``` |
| 288 | + |
| 289 | +## License |
| 290 | + |
| 291 | +MIT |
| 292 | + |
| 293 | +## Links |
| 294 | + |
| 295 | +- [GitHub Repository](https://github.com/keycardai/python-sdk) |
| 296 | +- [Documentation](https://docs.keycardai.com) |
| 297 | +- [Keycard Platform](https://keycard.ai) |
0 commit comments