@@ -36,24 +36,13 @@ def patched_write_atomic(
3636
3737import torch
3838import torch .nn as nn
39- from .utils import check_diffusers_version , remove_specific_blocks , log
40- check_diffusers_version ()
4139
4240from diffusers .models import AutoencoderKLCogVideoX
4341from diffusers .schedulers import CogVideoXDDIMScheduler
4442from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
4543from .pipeline_cogvideox import CogVideoXPipeline
4644from contextlib import nullcontext
4745
48- from .cogvideox_fun .transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFun
49- from .cogvideox_fun .fun_pab_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelFunPAB
50- from .cogvideox_fun .autoencoder_magvit import AutoencoderKLCogVideoX as AutoencoderKLCogVideoXFun
51-
52- from .cogvideox_fun .pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
53- from .cogvideox_fun .pipeline_cogvideox_control import CogVideoX_Fun_Pipeline_Control
54-
55- from .videosys .cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
56-
5746from accelerate import init_empty_weights
5847from accelerate .utils import set_module_tensor_to_device
5948
@@ -231,8 +220,6 @@ def loadmodel(self, model, precision, quantization="disabled", compile="disabled
231220
232221 if block_edit is not None :
233222 transformer = remove_specific_blocks (transformer , block_edit )
234-
235-
236223
237224 with open (scheduler_path ) as f :
238225 scheduler_config = json .load (f )
@@ -274,22 +261,6 @@ def loadmodel(self, model, precision, quantization="disabled", compile="disabled
274261 for l in lora :
275262 pipe .set_adapters (adapter_list , adapter_weights = adapter_weights )
276263 if fuse :
277- pipe .fuse_lora (lora_scale = lora [- 1 ]["strength" ] / lora_rank , components = ["transformer" ])
278-
279- #fp8
280- if fp8_transformer == "enabled" or fp8_transformer == "fastmode" :
281- for name , param in pipe .transformer .named_parameters ():
282- params_to_keep = {"patch_embed" , "lora" , "pos_embedding" }
283- if not any (keyword in name for keyword in params_to_keep ):
284- param .data = param .data .to (torch .float8_e4m3fn )
285-
286- if fp8_transformer == "fastmode" :
287- from .fp8_optimization import convert_fp8_linear
288- convert_fp8_linear (pipe .transformer , dtype )
289-
290- if enable_sequential_cpu_offload :
291- pipe .enable_sequential_cpu_offload ()
292-
293264 lora_scale = 1
294265 dimension_loras = ["orbit" , "dimensionx" ] # for now dimensionx loras need scaling
295266 if any (item in lora [- 1 ]["path" ].lower () for item in dimension_loras ):
@@ -1057,4 +1028,4 @@ def loadmodel(self, model):
10571028 "CogVideoLoraSelect" : "CogVideo LoraSelect" ,
10581029 "CogVideoXVAELoader" : "CogVideoX VAE Loader" ,
10591030 "CogVideoXModelLoader" : "CogVideoX Model Loader" ,
1060- }
1031+ }
0 commit comments