|
| 1 | +// SPDX-License-Identifier: MIT |
| 2 | +// Copyright (c) 2025 Kenji Koide (k.koide@aist.go.jp) |
| 3 | + |
| 4 | +#pragma once |
| 5 | + |
| 6 | +#include <Eigen/Core> |
| 7 | +#include <thrust/device_vector.h> |
| 8 | + |
| 9 | +#include <gtsam_points/cuda/kernels/pose.cuh> |
| 10 | +#include <gtsam_points/cuda/kernels/linearized_system.cuh> |
| 11 | + |
| 12 | +namespace gtsam_points { |
| 13 | + |
| 14 | +struct gicp_derivatives_kernel { |
| 15 | + gicp_derivatives_kernel( |
| 16 | + const Eigen::Isometry3f* linearization_point_ptr, |
| 17 | + const Eigen::Vector3f* target_means, |
| 18 | + const Eigen::Matrix3f* target_covs, |
| 19 | + const Eigen::Vector3f* source_means, |
| 20 | + const Eigen::Matrix3f* source_covs) |
| 21 | + : linearization_point_ptr(linearization_point_ptr), |
| 22 | + target_means_ptr(target_means), |
| 23 | + target_covs_ptr(target_covs), |
| 24 | + source_means_ptr(source_means), |
| 25 | + source_covs_ptr(source_covs) {} |
| 26 | + |
| 27 | + __device__ LinearizedSystem6 operator()(const thrust::pair<int, int>& source_target_correspondence) const { |
| 28 | + const int source_idx = source_target_correspondence.first; |
| 29 | + const int target_idx = source_target_correspondence.second; |
| 30 | + if (source_idx < 0 || target_idx < 0) { |
| 31 | + return LinearizedSystem6::zero(); |
| 32 | + } |
| 33 | + |
| 34 | + const Eigen::Isometry3f& x = *linearization_point_ptr; |
| 35 | + const Eigen::Matrix3f R = x.linear(); |
| 36 | + const Eigen::Vector3f t = x.translation(); |
| 37 | + |
| 38 | + const Eigen::Vector3f mean_A = source_means_ptr[source_idx]; |
| 39 | + const Eigen::Matrix3f cov_A = source_covs_ptr[source_idx]; |
| 40 | + const Eigen::Vector3f transed_mean_A = R * mean_A + t; |
| 41 | + |
| 42 | + const Eigen::Vector3f mean_B = target_means_ptr[target_idx]; |
| 43 | + const Eigen::Matrix3f cov_B = target_covs_ptr[target_idx]; |
| 44 | + |
| 45 | + const Eigen::Matrix3f RCR = (R * cov_A * R.transpose()); |
| 46 | + const Eigen::Matrix3f RCR_inv = (cov_B + RCR).inverse(); |
| 47 | + Eigen::Vector3f error = mean_B - transed_mean_A; |
| 48 | + |
| 49 | + Eigen::Matrix<float, 3, 6> J_target; |
| 50 | + J_target.block<3, 3>(0, 0) = -skew_symmetric(transed_mean_A); |
| 51 | + J_target.block<3, 3>(0, 3) = Eigen::Matrix3f::Identity(); |
| 52 | + |
| 53 | + Eigen::Matrix<float, 3, 6> J_source; |
| 54 | + J_source.block<3, 3>(0, 0) = R * skew_symmetric(mean_A); |
| 55 | + J_source.block<3, 3>(0, 3) = -R; |
| 56 | + |
| 57 | + Eigen::Matrix<float, 6, 3> J_target_RCR_inv = J_target.transpose() * RCR_inv; |
| 58 | + Eigen::Matrix<float, 6, 3> J_source_RCR_inv = J_source.transpose() * RCR_inv; |
| 59 | + |
| 60 | + LinearizedSystem6 linearized; |
| 61 | + linearized.num_inliers = 1; |
| 62 | + linearized.error = error.transpose() * RCR_inv * error; |
| 63 | + linearized.H_target = J_target_RCR_inv * J_target; |
| 64 | + linearized.H_source = J_source_RCR_inv * J_source; |
| 65 | + linearized.H_target_source = J_target_RCR_inv * J_source; |
| 66 | + linearized.b_target = J_target_RCR_inv * error; |
| 67 | + linearized.b_source = J_source_RCR_inv * error; |
| 68 | + |
| 69 | + return linearized; |
| 70 | + } |
| 71 | + |
| 72 | + const Eigen::Isometry3f* linearization_point_ptr; |
| 73 | + |
| 74 | + const Eigen::Vector3f* target_means_ptr; |
| 75 | + const Eigen::Matrix3f* target_covs_ptr; |
| 76 | + |
| 77 | + const Eigen::Vector3f* source_means_ptr; |
| 78 | + const Eigen::Matrix3f* source_covs_ptr; |
| 79 | +}; |
| 80 | + |
| 81 | +struct gicp_error_kernel { |
| 82 | + gicp_error_kernel( |
| 83 | + const Eigen::Isometry3f* linearization_point_ptr, |
| 84 | + const Eigen::Isometry3f* evaluation_point_ptr, |
| 85 | + const Eigen::Vector3f* target_means, |
| 86 | + const Eigen::Matrix3f* target_covs, |
| 87 | + const Eigen::Vector3f* source_means, |
| 88 | + const Eigen::Matrix3f* source_covs) |
| 89 | + : linearization_point_ptr(linearization_point_ptr), |
| 90 | + evaluation_point_ptr(evaluation_point_ptr), |
| 91 | + target_means_ptr(target_means), |
| 92 | + target_covs_ptr(target_covs), |
| 93 | + source_means_ptr(source_means), |
| 94 | + source_covs_ptr(source_covs) {} |
| 95 | + |
| 96 | + __device__ float operator()(const thrust::pair<int, int>& source_target_correspondence) const { |
| 97 | + const int source_idx = source_target_correspondence.first; |
| 98 | + const int target_idx = source_target_correspondence.second; |
| 99 | + if (source_idx < 0 || target_idx < 0) { |
| 100 | + return 0.0f; |
| 101 | + } |
| 102 | + |
| 103 | + const Eigen::Isometry3f& xl = *linearization_point_ptr; |
| 104 | + const Eigen::Matrix3f Rl = xl.linear(); |
| 105 | + |
| 106 | + const Eigen::Isometry3f& xe = *evaluation_point_ptr; |
| 107 | + const Eigen::Matrix3f Re = xe.linear(); |
| 108 | + const Eigen::Vector3f te = xe.translation(); |
| 109 | + |
| 110 | + const Eigen::Vector3f mean_A = source_means_ptr[source_idx]; |
| 111 | + const Eigen::Matrix3f cov_A = source_covs_ptr[source_idx]; |
| 112 | + const Eigen::Vector3f transed_mean_A = Re * mean_A + te; |
| 113 | + |
| 114 | + const Eigen::Vector3f mean_B = target_means_ptr[target_idx]; |
| 115 | + const Eigen::Matrix3f cov_B = target_covs_ptr[target_idx]; |
| 116 | + |
| 117 | + const Eigen::Matrix3f RCR = (Rl * cov_A * Rl.transpose()); |
| 118 | + const Eigen::Matrix3f RCR_inv = (cov_B + RCR).inverse(); |
| 119 | + Eigen::Vector3f error = mean_B - transed_mean_A; |
| 120 | + |
| 121 | + return error.transpose() * RCR_inv * error; |
| 122 | + } |
| 123 | + |
| 124 | + const Eigen::Isometry3f* linearization_point_ptr; |
| 125 | + const Eigen::Isometry3f* evaluation_point_ptr; |
| 126 | + |
| 127 | + const Eigen::Vector3f* target_means_ptr; |
| 128 | + const Eigen::Matrix3f* target_covs_ptr; |
| 129 | + const Eigen::Vector3f* source_means_ptr; |
| 130 | + const Eigen::Matrix3f* source_covs_ptr; |
| 131 | +}; |
| 132 | + |
| 133 | +} // namespace gtsam_points |
0 commit comments