Skip to content

Commit cb263f4

Browse files
authored
Merge pull request #3 from kolosovpetro/MATH-94
MATH-94
2 parents a24f35f + 6036007 commit cb263f4

8 files changed

+72
-46
lines changed

BIBTEX-CITATION.bib

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
1-
@MISC{GithubSource_2022,
1+
@misc{kolosov_spline_approximation2025,
22
author = {Petro Kolosov},
3-
title = {{"Github Template" Source files}},
4-
howpublished = {Available electronically at \url {https://github.com/kolosovpetro/github-latex-template}},
5-
year = {2022}
6-
}
3+
title = {An Efficient Method of Spline Approximation},
4+
year = {2025},
5+
journal = {{GitHub preprint}},
6+
note = {\url{https://kolosovpetro.github.io/pdf/AnEfficientMethodOfSplineApproximation.pdf}}
7+
}

CHANGELOG.md

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,17 @@ All notable changes to this project will be documented in this file.
55
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
66
and this project adheres to [Semantic Versioning v2.0.0](https://semver.org/spec/v2.0.0.html).
77

8+
## [1.0.2] - 2025-02-24
9+
10+
### Changed
11+
12+
- Update abstract
13+
- Avoid to use 'I' in discussions
14+
- Fix abstract
15+
- Minor fixes to improve the flow
16+
- Move Mathematica programs to bibliography
17+
- Update bibtex citation
18+
819
## [1.0.1] - 2025-02-21
920

1021
### Changed

out/AnEfficientMethodOfSplineApproximation.bbl

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,4 +65,10 @@ Petro Kolosov.
6565
identity}, 2018.
6666
\newblock \url{https://oeis.org/A316387}.
6767

68+
\bibitem{kolosovpetro_gist}
69+
Petro Kolosov.
70+
\newblock Mathematica programs to generate plots and tables, 2025.
71+
\newblock
72+
\url{https://gist.github.com/kolosovpetro/2b5c55094c66b8d6a97b9798be9a8dec}.
73+
6874
\end{thebibliography}

out/AnEfficientMethodOfSplineApproximation.blg

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -5,44 +5,44 @@ Reallocating 'name_of_file' (item size: 1) to 6 items.
55
The style file: unsrt.bst
66
Reallocating 'name_of_file' (item size: 1) to 39 items.
77
Database file #1: AnEfficientMethodOfSplineApproximation.bib
8-
You've used 11 entries,
8+
You've used 12 entries,
99
1791 wiz_defined-function locations,
10-
508 strings with 5657 characters,
11-
and the built_in function-call counts, 1638 in all, are:
12-
= -- 143
13-
> -- 44
10+
511 strings with 5798 characters,
11+
and the built_in function-call counts, 1765 in all, are:
12+
= -- 153
13+
> -- 48
1414
< -- 0
15-
+ -- 22
16-
- -- 11
17-
* -- 47
18-
:= -- 261
19-
add.period$ -- 36
20-
call.type$ -- 11
21-
change.case$ -- 11
15+
+ -- 24
16+
- -- 12
17+
* -- 48
18+
:= -- 280
19+
add.period$ -- 39
20+
call.type$ -- 12
21+
change.case$ -- 12
2222
chr.to.int$ -- 0
23-
cite$ -- 11
24-
duplicate$ -- 66
25-
empty$ -- 207
26-
format.name$ -- 11
27-
if$ -- 371
23+
cite$ -- 12
24+
duplicate$ -- 71
25+
empty$ -- 225
26+
format.name$ -- 12
27+
if$ -- 401
2828
int.to.chr$ -- 0
29-
int.to.str$ -- 11
29+
int.to.str$ -- 12
3030
missing$ -- 3
31-
newline$ -- 61
32-
num.names$ -- 11
33-
pop$ -- 58
31+
newline$ -- 66
32+
num.names$ -- 12
33+
pop$ -- 65
3434
preamble$ -- 1
3535
purify$ -- 0
3636
quote$ -- 0
37-
skip$ -- 32
37+
skip$ -- 35
3838
stack$ -- 0
3939
substring$ -- 50
40-
swap$ -- 11
40+
swap$ -- 12
4141
text.length$ -- 0
4242
text.prefix$ -- 0
4343
top$ -- 0
4444
type$ -- 0
4545
warning$ -- 0
46-
while$ -- 15
47-
width$ -- 13
48-
write$ -- 120
46+
while$ -- 16
47+
width$ -- 14
48+
write$ -- 130
888 Bytes
Binary file not shown.

src/AnEfficientMethodOfSplineApproximation.bib

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -339,3 +339,10 @@ @misc{kolosov2025unexpected
339339
year = {2025},
340340
note = {\url{https://kolosovpetro.github.io/pdf/UnexpectedPolynomialIdentity.pdf}}
341341
}
342+
343+
@misc{kolosovpetro_gist,
344+
author = {Petro Kolosov},
345+
title = {Mathematica programs to generate plots and tables},
346+
year = {2025},
347+
note = {\url{https://gist.github.com/kolosovpetro/2b5c55094c66b8d6a97b9798be9a8dec}}
348+
}

src/sections/01_abstract.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
1-
Let $P(m, X, N)$ be an $m$-degree polynomials in $X\in\mathbb{R}$
1+
Let $P(m, X, N)$ be an $m$-degree polynomial in $X\in\mathbb{R}$
22
having fixed non-negative integers $m$ and $N$.
33
Essentially, the polynomial $P(m, X, N)$ is a result of a rearrangement inside Faulhaber's formula
44
in the context of Knuth's work entitled "Johann Faulhaber and sums of powers".
55
In this manuscript we discuss the approximation properties of polynomial $P(m,X,N)$.
66
In particular, the polynomial $P(m,X,N)$ approximates the odd power function $X^{2m+1}$ in a certain neighborhood
77
of a fixed non-negative integer $N$ with a percentage error less than $1\%$.
88
By increasing the value of $N$ the length of convergence interval with odd-power $X^{2m+1}$ also increases.
9-
Furthermore, this approximation technique is generalized for arbitrary non-negative exponent of the power function $X^j$
9+
Furthermore, this approximation technique is generalized for arbitrary non-negative exponent $j$ of the power function $X^j$
1010
by using splines.

src/sections/02_introduction.tex

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,8 @@
1616
For example,
1717
\input{sections/figures/05_fig_coefficients_a}
1818

19-
Essentially, the polynomial $P(m, X, N)$ is derived from a rearrangement of Faulhaber's formula.
20-
It was inspired by Knuth's \textit{Johann Faulhaber and sums of powers}, see~\cite{knuth1993johann}.
19+
Essentially, the polynomial $P(m, X, N)$ is derived from a rearrangement of Faulhaber's formula
20+
in the context of Knuth's work entitled \textit{Johann Faulhaber and sums of powers}, see~\cite{knuth1993johann}.
2121
In particular, the polynomial $P(m, X, N)$ yields an identity for odd powers
2222
\begin{align*}
2323
P(m, X, X) = X^{2m+1}
@@ -28,21 +28,22 @@
2828
\end{align*}
2929
The exact relation between Faulhaber's formula and $P(m,X,N)$ is shown by~\cite{kolosov2025unexpected}.
3030

31-
However, apart from the polynomial identity for odd powers, I've discovered several approximation properties of $P(m,X,N)$.
31+
However, apart from the polynomial identity for odd powers, a few approximation properties of $P(m,X,N)$
32+
were discovered in addition.
3233
Therefore, in this manuscript we explore the approximation properties of the polynomial $P(m,X,N)$.
33-
I use a few well-known criteria to measure and estimate error of approximation: Absolute error, Relative error and
34-
Percentage error.
34+
During our discussion, we utilize the following well-known criteria to measure and estimate
35+
the error of approximation: Absolute error, Relative error and Percentage error.
3536
Assume that the function $f_2(x)$ approximates the function $f_1 (x)$, then errors are given by
3637
\begin{align*}
3738
\mathrm{Absolute \; Error} &= \lvert f_1(x) - f_2(x) \rvert \\
3839
\mathrm{Relative \; Error} &= \frac{\lvert f_1(x) - f_2(x) \rvert}{\lvert f_1(x) \rvert} \\
3940
\mathrm{Percentage \; Error} &= \frac{\lvert f_1(x) - f_2(x) \rvert}{\lvert f_1(x) \rvert} \times 100\%
4041
\end{align*}
4142

42-
Diving straight into the point, we switch our focus to the previously mentioned polynomial
43+
Diving straight into the point, we switch our focus to the partial case of polynomial
4344
$P(2,X,4) = 900X^2 - 6000X + 10624$
4445
to show the first example of how it approximates the odd power function $X^5$.
45-
In fact, we approximate the polynomial $X^{2m+1}$ using a lower-degree polynomial of degree $m$,
46+
In general, we approximate the polynomial $X^{2m+1}$ using a lower-degree polynomial of degree $m$,
4647
as shown in the following image
4748
\begin{figure}[H]
4849
\centering
@@ -52,8 +53,8 @@
5253
Convergence interval is $4.0 \leq X \leq 5.1$ with percentage error $E < 1\%$.
5354
}\label{fig:03_plots_polynomial_p2_n4_with_fifth}
5455
\end{figure}
55-
As observed, the polynomial $P(2, X, 4)$ approximates $X^5$ in the neighborhood of $N=4$ with
56-
the convergence interval $4.0 \leq X \leq 5.1$ where the percentage error is less than $1\%$ which is quite remarkable.
56+
As observed, the polynomial $P(2, X, 4)$ approximates $X^5$ in a certain neighborhood of $N=4$ with
57+
the convergence interval $4.0 \leq X \leq 5.1$ such that the percentage error is less than $1\%$ which is quite remarkable.
5758
The following table presents specific values of absolute, relative, and percentage errors for this approximation
5859
\input{sections/figures/032_polynomials_p2_table_n4}
5960

@@ -86,9 +87,9 @@
8687
It approximates the odd power function $X^{2m+1}$ within a specific neighborhood of $N$.
8788
The length $L$ of the convergence interval between $X^{2m+1}$ and $P(m,X,N)$ increases as $N$ grows.
8889

89-
For the sake of clear and precise verification of results, I attach mathematica programs to generate
90+
For the sake of clear and precise verification of results, consider the Mathematica programs to generate
9091
plots and data tables, so that reader is able to verify the main results of current part of manuscript,
91-
see the \href{https://gist.github.com/kolosovpetro/2b5c55094c66b8d6a97b9798be9a8dec}{\texttt{link}}.
92+
see~\cite{kolosovpetro_gist}.
9293

9394
So far we have discussed approximation of odd power function $X^{2m+1}$, now we focus on its even case $X^{2m+2}$
9495
which is quite straightforward.
@@ -104,5 +105,5 @@
104105
Therefore, we have reached the statement that
105106
the polynomial $P(m,X,N)$ is an $m$-degree polynomial in $X$, having fixed non-negative
106107
integers $m$ and $N$.
107-
It approximates the power function $X^{j}$ in some neighborhood of fixed $N$.
108-
The length of convergence interval between power function $X^j$ and $P(m,X,N) \cdot X^K$ rises as $N$ rise.
108+
It approximates the power function $X^{j}$ in a certain neighborhood of fixed $N$.
109+
The length of convergence interval between the power function $X^j$ and $P(m,X,N) \cdot X^K$ increases as $N$ grow.

0 commit comments

Comments
 (0)