@@ -89,28 +89,32 @@ With incompatibilities, we would note
8989\Rightarrow \quad \\ { a: T_a, c: \overline{T_c} \\ }. \\ ]
9090
9191This is the simplified version of the rule of resolution.
92- For the generalization, let's reuse the "more mathematical" notation of conjunctions
93- for incompatibilities \\ ( T_a \land T_b \\ ) and the above rule would be
92+ For the generalization, let's write them as [ boolean expressions] [ boolean_expression ] .
9493
95- \\ [ T_a \land \overline{T_b}, \quad
96- T_b \land \overline{T_c} \quad
97- \Rightarrow \quad T_a \land \overline{T_c}. \\ ]
94+ \\ [ \neg ( T_a \land \overline{T_b}) \quad \land \quad
95+ \neg ( T_b \land \overline{T_c}) \quad
96+ \Rightarrow \quad \neg ( T_a \land \overline{T_c}) . \\ ]
9897
9998In fact, the above rule can also be expressed as follows
10099
101- \\ [ T_a \land \overline{T_b}, \quad
102- T_b \land \overline{T_c} \quad
103- \Rightarrow \quad T_a \land (\overline{T_b} \lor T_b) \land \overline{T_c} \\ ]
100+ \\ [ \neg ( T_a \land \overline{T_b}) \quad \land \quad
101+ \neg ( T_b \land \overline{T_c}) \quad
102+ \Rightarrow \quad \neg ( T_a \land (\overline{T_b} \lor T_b) \land \overline{T_c}) \\ ]
104103
105104since for any term \\ ( T \\ ), the disjunction \\ ( T \lor \overline{T} \\ ) is always true.
106- In general, for any two incompatibilities \\ ( T_a^1 \land T_b^1 \land \ cdots \land T_z^1 \\ )
107- and \\ ( T_a^2 \land T_b^2 \land \ cdots \land T_z^2 \\ ) we can deduce a third,
108- called the resolvent whose expression is
105+ In general, for any two incompatibilities \\ ( \\ { a: T_a^1, \ cdots, z: T_z^1 \\ } \\ ) and
106+ \\ ( \\ { a: T_a^2, \ cdots, z: T_z^2 \\ }, \\ )
107+ or
109108
110- \\ [ (T_a^1 \lor T_a^2) \land (T_b^1 \land T_b^2) \land \cdots \land (T_z^1 \land T_z^2). \\ ]
109+ \\ [ \neg (T_a^1 \land T_b^1 \land \cdots \land T_z^1) \land \neg (T_a^2 \land T_b^2 \land \cdots \land T_z^2), \\ ]
110+ we can deduce a third, called the resolvent whose expression is
111+
112+ \\ [ \neg ((T_a^1 \lor T_a^2) \land (T_b^1 \land T_b^2) \land \cdots \land (T_z^1 \land T_z^2)). \\ ]
111113
112114In that expression, only one pair of package terms is regrouped as a union (a disjunction),
113115the others are all intersected (conjunction).
114116If a term for a package does not exist in one incompatibility,
115117it can safely be replaced by the term \\ ( \neg [ \varnothing] \\ ) in the expression above
116118as we have already explained before.
119+
120+ [ boolean_expression ] : https://en.wikipedia.org/wiki/Boolean_expression#Boolean_operators
0 commit comments