|
| 1 | +import math |
| 2 | +from collections import deque |
| 3 | +from typing import Dict, Literal, Optional |
| 4 | + |
| 5 | +import torch |
| 6 | +from torch import nn |
| 7 | +from torch.optim.optimizer import Optimizer |
| 8 | + |
| 9 | +from pytorch_optimizer.base.exception import NoSparseGradientError |
| 10 | +from pytorch_optimizer.base.optimizer import BaseOptimizer |
| 11 | +from pytorch_optimizer.base.types import BETAS, CLOSURE, DEFAULTS, LOSS, PARAMETERS |
| 12 | + |
| 13 | +FILTER_TYPE = Literal['mean', 'sum'] |
| 14 | + |
| 15 | + |
| 16 | +@torch.no_grad() |
| 17 | +def gradfilter_ma( |
| 18 | + model: nn.Module, |
| 19 | + grads: Optional[Dict[str, deque]] = None, |
| 20 | + window_size: int = 100, |
| 21 | + lamb: float = 5.0, |
| 22 | + filter_type: FILTER_TYPE = 'mean', |
| 23 | + warmup: bool = True, |
| 24 | +) -> Dict[str, deque]: |
| 25 | + r"""Grokfast-MA. |
| 26 | +
|
| 27 | + :param model: nn.Module. model that contains every trainable parameters. |
| 28 | + :param grads: Optional[Dict[str, deque]]. running memory (Queue for windowed moving average). initialize by setting |
| 29 | + it to None. feed the output of the method recursively after on. |
| 30 | + :param window_size: int. the width of the filter window. additional memory requirements increases linearly with |
| 31 | + respect to the windows size. |
| 32 | + :param lamb: float. amplifying factor hyperparameter of the filter. |
| 33 | + :param filter_type: FILTER_TYPE. aggregation method for the running queue. |
| 34 | + :param warmup: bool. if true, filter is not applied until the queue is filled. |
| 35 | + """ |
| 36 | + if grads is None: |
| 37 | + grads = {n: deque(maxlen=window_size) for n, p in model.named_parameters() if p.requires_grad} |
| 38 | + |
| 39 | + for n, p in model.named_parameters(): |
| 40 | + if p.requires_grad: |
| 41 | + grads[n].append(p.grad) |
| 42 | + |
| 43 | + if not warmup or len(grads[n]) == window_size: |
| 44 | + if filter_type == 'mean': |
| 45 | + avg = sum(grads[n]) / len(grads[n]) |
| 46 | + elif filter_type == 'sum': |
| 47 | + avg = sum(grads[n]) |
| 48 | + else: |
| 49 | + raise ValueError(f'Unrecognized filter_type {filter_type}') |
| 50 | + |
| 51 | + p.grad.add_(avg, alpha=lamb) |
| 52 | + |
| 53 | + return grads |
| 54 | + |
| 55 | + |
| 56 | +@torch.no_grad() |
| 57 | +def gradfilter_ema( |
| 58 | + model: nn.Module, |
| 59 | + grads: Optional[Dict[str, torch.Tensor]] = None, |
| 60 | + alpha: float = 0.98, |
| 61 | + lamb: float = 2.0, |
| 62 | +) -> Dict[str, torch.Tensor]: |
| 63 | + r"""Grokfast. |
| 64 | +
|
| 65 | + :param model: nn.Module. model that contains every trainable parameters. |
| 66 | + :param grads: Optional[Dict[str, deque]]. running memory (EMA). Initialize by setting it to None. Feed the output |
| 67 | + of the method recursively after on. |
| 68 | + :param alpha: int. momentum hyperparameter of the EMA. |
| 69 | + :param lamb: float. amplifying factor hyperparameter of the filter. |
| 70 | + """ |
| 71 | + if grads is None: |
| 72 | + grads = {n: p.grad for n, p in model.named_parameters() if p.requires_grad} |
| 73 | + |
| 74 | + for n, p in model.named_parameters(): |
| 75 | + if p.requires_grad: |
| 76 | + grads[n].mul_(alpha).add_(p.grad, alpha=1.0 - alpha) |
| 77 | + p.grad.add_(grads[n], alpha=lamb) |
| 78 | + |
| 79 | + return grads |
| 80 | + |
| 81 | + |
| 82 | +class GrokFastAdamW(Optimizer, BaseOptimizer): |
| 83 | + r"""Accelerated Grokking by Amplifying Slow Gradients with AdamW. |
| 84 | +
|
| 85 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. |
| 86 | + :param lr: float. learning rate. |
| 87 | + :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. |
| 88 | + :param grokfast: bool. whether to use grokfast. |
| 89 | + :param grokfast_alpha: float. momentum hyperparameter of the EMA. |
| 90 | + :param grokfast_lamb: float. amplifying factor hyperparameter of the filter.. |
| 91 | + :param grokfast_after_step: int. warmup step for grokfast. |
| 92 | + :param weight_decay: float. weight decay (L2 penalty). |
| 93 | + :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. |
| 94 | + :param fixed_decay: bool. fix weight decay. |
| 95 | + :param eps: float. term added to the denominator to improve numerical stability. |
| 96 | + """ |
| 97 | + |
| 98 | + def __init__( |
| 99 | + self, |
| 100 | + params: PARAMETERS, |
| 101 | + lr: float = 1e-4, |
| 102 | + betas: BETAS = (0.9, 0.99), |
| 103 | + grokfast: bool = True, |
| 104 | + grokfast_alpha: float = 0.98, |
| 105 | + grokfast_lamb: float = 2.0, |
| 106 | + grokfast_after_step: int = 0, |
| 107 | + weight_decay: float = 0.0, |
| 108 | + weight_decouple: bool = True, |
| 109 | + fixed_decay: bool = False, |
| 110 | + normalize_lr: bool = True, |
| 111 | + eps: float = 1e-8, |
| 112 | + ): |
| 113 | + self.validate_learning_rate(lr) |
| 114 | + self.validate_betas(betas) |
| 115 | + self.validate_non_negative(weight_decay, 'weight_decay') |
| 116 | + self.validate_range(grokfast_alpha, 'grokfast_alpha', 0.0, 1.0) |
| 117 | + self.validate_non_negative(eps, 'eps') |
| 118 | + |
| 119 | + if grokfast and normalize_lr: |
| 120 | + lr /= 1.0 + grokfast_lamb |
| 121 | + |
| 122 | + defaults: DEFAULTS = { |
| 123 | + 'lr': lr, |
| 124 | + 'betas': betas, |
| 125 | + 'weight_decay': weight_decay, |
| 126 | + 'weight_decouple': weight_decouple, |
| 127 | + 'fixed_decay': fixed_decay, |
| 128 | + 'grokfast': grokfast, |
| 129 | + 'grokfast_alpha': grokfast_alpha, |
| 130 | + 'grokfast_lamb': grokfast_lamb, |
| 131 | + 'grokfast_after_step': grokfast_after_step, |
| 132 | + 'eps': eps, |
| 133 | + } |
| 134 | + super().__init__(params, defaults) |
| 135 | + |
| 136 | + def __str__(self) -> str: |
| 137 | + return 'GrokFastAdamW' |
| 138 | + |
| 139 | + @torch.no_grad() |
| 140 | + def reset(self): |
| 141 | + for group in self.param_groups: |
| 142 | + group['step'] = 0 |
| 143 | + for p in group['params']: |
| 144 | + state = self.state[p] |
| 145 | + |
| 146 | + state['exp_avg'] = torch.zeros_like(p) |
| 147 | + state['exp_avg_sq'] = torch.zeros_like(p) |
| 148 | + |
| 149 | + @torch.no_grad() |
| 150 | + def step(self, closure: CLOSURE = None) -> LOSS: |
| 151 | + loss: LOSS = None |
| 152 | + if closure is not None: |
| 153 | + with torch.enable_grad(): |
| 154 | + loss = closure() |
| 155 | + |
| 156 | + for group in self.param_groups: |
| 157 | + if 'step' in group: |
| 158 | + group['step'] += 1 |
| 159 | + else: |
| 160 | + group['step'] = 1 |
| 161 | + |
| 162 | + beta1, beta2 = group['betas'] |
| 163 | + |
| 164 | + bias_correction1: float = 1.0 - beta1 ** group['step'] |
| 165 | + bias_correction2_sq: float = math.sqrt(1.0 - beta2 ** group['step']) |
| 166 | + |
| 167 | + should_grokfast: bool = ( |
| 168 | + group['grokfast'] and group['step'] > group['grokfast_after_step'] and group['grokfast_lamb'] > 0 |
| 169 | + ) |
| 170 | + |
| 171 | + for p in group['params']: |
| 172 | + if p.grad is None: |
| 173 | + continue |
| 174 | + |
| 175 | + grad = p.grad |
| 176 | + if grad.is_sparse: |
| 177 | + raise NoSparseGradientError(str(self)) |
| 178 | + |
| 179 | + state = self.state[p] |
| 180 | + |
| 181 | + if len(state) == 0: |
| 182 | + state['exp_avg'] = torch.zeros_like(p) |
| 183 | + state['exp_avg_sq'] = torch.zeros_like(p) |
| 184 | + if should_grokfast: |
| 185 | + state['grok_exp_avg'] = grad.clone() |
| 186 | + |
| 187 | + self.apply_weight_decay( |
| 188 | + p=p, |
| 189 | + grad=grad, |
| 190 | + lr=group['lr'], |
| 191 | + weight_decay=group['weight_decay'], |
| 192 | + weight_decouple=group['weight_decouple'], |
| 193 | + fixed_decay=group['fixed_decay'], |
| 194 | + ) |
| 195 | + |
| 196 | + if should_grokfast: |
| 197 | + grok_exp_avg = state['grok_exp_avg'] |
| 198 | + grok_exp_avg.lerp_(grad, weight=1.0 - group['grokfast_alpha']) |
| 199 | + |
| 200 | + grad.add_(grok_exp_avg, alpha=group['grokfast_lamb']) |
| 201 | + |
| 202 | + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
| 203 | + exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) |
| 204 | + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) |
| 205 | + |
| 206 | + de_nom = exp_avg_sq.sqrt().div_(bias_correction2_sq).clamp_(min=group['eps']) |
| 207 | + |
| 208 | + update = exp_avg.div(bias_correction1).div_(de_nom) |
| 209 | + |
| 210 | + p.add_(update, alpha=-group['lr']) |
| 211 | + |
| 212 | + return loss |
0 commit comments