|
| 1 | +import torch |
| 2 | +from torch.optim.optimizer import Optimizer |
| 3 | + |
| 4 | +from pytorch_optimizer.base_optimizer import BaseOptimizer |
| 5 | +from pytorch_optimizer.gc import centralize_gradient |
| 6 | +from pytorch_optimizer.types import BETAS, CLOSURE, DEFAULTS, LOSS, PARAMETERS |
| 7 | + |
| 8 | + |
| 9 | +class Adan(Optimizer, BaseOptimizer): |
| 10 | + """ |
| 11 | + Reference : x |
| 12 | + Example : |
| 13 | + from pytorch_optimizer import Adan |
| 14 | + ... |
| 15 | + model = YourModel() |
| 16 | + optimizer = Adan(model.parameters()) |
| 17 | + ... |
| 18 | + for input, output in data: |
| 19 | + optimizer.zero_grad() |
| 20 | + loss = loss_function(output, model(input)) |
| 21 | + loss.backward() |
| 22 | + optimizer.step() |
| 23 | + """ |
| 24 | + |
| 25 | + def __init__( |
| 26 | + self, |
| 27 | + params: PARAMETERS, |
| 28 | + lr: float = 1e-3, |
| 29 | + betas: BETAS = (0.98, 0.92, 0.99), |
| 30 | + weight_decay: float = 0.02, |
| 31 | + use_gc: bool = False, |
| 32 | + eps: float = 1e-16, |
| 33 | + ): |
| 34 | + """Adan optimizer |
| 35 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups |
| 36 | + :param lr: float. learning rate |
| 37 | + :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace |
| 38 | + :param weight_decay: float. weight decay (L2 penalty) |
| 39 | + :param use_gc: bool. use gradient centralization |
| 40 | + :param eps: float. term added to the denominator to improve numerical stability |
| 41 | + """ |
| 42 | + self.lr = lr |
| 43 | + self.betas = betas |
| 44 | + self.weight_decay = weight_decay |
| 45 | + self.use_gc = use_gc |
| 46 | + self.eps = eps |
| 47 | + |
| 48 | + self.validate_parameters() |
| 49 | + |
| 50 | + defaults: DEFAULTS = dict( |
| 51 | + lr=lr, |
| 52 | + betas=betas, |
| 53 | + eps=eps, |
| 54 | + weight_decay=weight_decay, |
| 55 | + ) |
| 56 | + super().__init__(params, defaults) |
| 57 | + |
| 58 | + def validate_parameters(self): |
| 59 | + self.validate_learning_rate(self.lr) |
| 60 | + self.validate_betas(self.betas) |
| 61 | + self.validate_weight_decay(self.weight_decay) |
| 62 | + self.validate_epsilon(self.eps) |
| 63 | + |
| 64 | + @torch.no_grad() |
| 65 | + def reset(self): |
| 66 | + for group in self.param_groups: |
| 67 | + for p in group['params']: |
| 68 | + state = self.state[p] |
| 69 | + |
| 70 | + state['step'] = 0 |
| 71 | + state['exp_avg'] = torch.zeros_like(p) |
| 72 | + state['exp_avg_var'] = torch.zeros_like(p) |
| 73 | + state['exp_avg_nest'] = torch.zeros_like(p) |
| 74 | + state['previous_grad'] = torch.zeros_like(p) |
| 75 | + |
| 76 | + @torch.no_grad() |
| 77 | + def step(self, closure: CLOSURE = None) -> LOSS: |
| 78 | + loss: LOSS = None |
| 79 | + if closure is not None: |
| 80 | + with torch.enable_grad(): |
| 81 | + loss = closure() |
| 82 | + |
| 83 | + for group in self.param_groups: |
| 84 | + for p in group['params']: |
| 85 | + if p.grad is None: |
| 86 | + continue |
| 87 | + |
| 88 | + grad = p.grad |
| 89 | + if grad.is_sparse: |
| 90 | + raise RuntimeError('Adan does not support sparse gradients') |
| 91 | + |
| 92 | + state = self.state[p] |
| 93 | + if len(state) == 0: |
| 94 | + state['step'] = 0 |
| 95 | + state['exp_avg'] = torch.zeros_like(p) |
| 96 | + state['exp_avg_var'] = torch.zeros_like(p) |
| 97 | + state['exp_avg_nest'] = torch.zeros_like(p) |
| 98 | + state['previous_grad'] = torch.zeros_like(p) |
| 99 | + |
| 100 | + exp_avg, exp_avg_var, exp_avg_nest = state['exp_avg'], state['exp_avg_var'], state['exp_avg_nest'] |
| 101 | + prev_grad = state['previous_grad'] |
| 102 | + |
| 103 | + state['step'] += 1 |
| 104 | + beta1, beta2, beta3 = group['betas'] |
| 105 | + |
| 106 | + if self.use_gc: |
| 107 | + grad = centralize_gradient(grad, gc_conv_only=False) |
| 108 | + |
| 109 | + grad_diff = grad - prev_grad |
| 110 | + state['previous_grad'] = grad.clone() |
| 111 | + |
| 112 | + exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) |
| 113 | + exp_avg_var.mul_(beta2).add_(grad_diff, alpha=1.0 - beta2) |
| 114 | + exp_avg_nest.mul_(beta3).add_((grad + beta2 * grad_diff) ** 2, alpha=1.0 - beta3) |
| 115 | + |
| 116 | + step_size = group['lr'] / exp_avg_nest.add_(self.eps).sqrt_() |
| 117 | + |
| 118 | + p.sub_(step_size * (exp_avg + beta2 * exp_avg_var)) |
| 119 | + p.div_(1.0 + group['weight_decay']) |
| 120 | + |
| 121 | + return loss |
0 commit comments