|
| 1 | +import math |
| 2 | + |
| 3 | +import torch |
| 4 | +from torch.optim.optimizer import Optimizer |
| 5 | + |
| 6 | +from pytorch_optimizer.types import BETAS, CLOSURE, DEFAULTS, LOSS, PARAMETERS, STATE |
| 7 | + |
| 8 | + |
| 9 | +class DiffRGrad(Optimizer): |
| 10 | + """ |
| 11 | + Reference 1 : https://github.com/shivram1987/diffGrad |
| 12 | + Reference 2 : https://github.com/LiyuanLucasLiu/RAdam |
| 13 | + Reference 3 : https://github.com/lessw2020/Best-Deep-Learning-Optimizers/blob/master/diffgrad/diff_rgrad.py |
| 14 | + Example : |
| 15 | + from pytorch_optimizer import DiffRGrad |
| 16 | + ... |
| 17 | + model = YourModel() |
| 18 | + optimizer = DiffRGrad(model.parameters()) |
| 19 | + ... |
| 20 | + for input, output in data: |
| 21 | + optimizer.zero_grad() |
| 22 | + loss = loss_function(output, model(input)) |
| 23 | + loss.backward() |
| 24 | + optimizer.step() |
| 25 | + """ |
| 26 | + |
| 27 | + def __init__( |
| 28 | + self, |
| 29 | + params: PARAMETERS, |
| 30 | + lr: float = 1e-3, |
| 31 | + betas: BETAS = (0.9, 0.999), |
| 32 | + weight_decay: float = 0.0, |
| 33 | + degenerated_to_sgd: bool = True, |
| 34 | + eps: float = 1e-8, |
| 35 | + ): |
| 36 | + """Blend RAdam with DiffGrad |
| 37 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups |
| 38 | + :param lr: float. learning rate. |
| 39 | + :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace |
| 40 | + :param weight_decay: float. weight decay (L2 penalty) |
| 41 | + :param degenerated_to_sgd: float. |
| 42 | + :param eps: float. term added to the denominator to improve numerical stability |
| 43 | + """ |
| 44 | + self.lr = lr |
| 45 | + self.betas = betas |
| 46 | + self.weight_decay = weight_decay |
| 47 | + self.degenerated_to_sgd = degenerated_to_sgd |
| 48 | + self.eps = eps |
| 49 | + |
| 50 | + self.check_valid_parameters() |
| 51 | + |
| 52 | + defaults: DEFAULTS = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
| 53 | + super().__init__(params, defaults) |
| 54 | + |
| 55 | + def check_valid_parameters(self): |
| 56 | + if self.lr < 0.0: |
| 57 | + raise ValueError(f'Invalid learning rate : {self.lr}') |
| 58 | + if self.weight_decay < 0.0: |
| 59 | + raise ValueError(f'Invalid weight_decay : {self.weight_decay}') |
| 60 | + if not 0.0 <= self.betas[0] < 1.0: |
| 61 | + raise ValueError(f'Invalid beta_0 : {self.betas[0]}') |
| 62 | + if not 0.0 <= self.betas[1] < 1.0: |
| 63 | + raise ValueError(f'Invalid beta_1 : {self.betas[1]}') |
| 64 | + if self.eps < 0.0: |
| 65 | + raise ValueError(f'Invalid eps : {self.eps}') |
| 66 | + |
| 67 | + def __setstate__(self, state: STATE): |
| 68 | + super().__setstate__(state) |
| 69 | + |
| 70 | + def step(self, closure: CLOSURE = None) -> LOSS: |
| 71 | + loss: LOSS = None |
| 72 | + if closure is not None: |
| 73 | + loss = closure() |
| 74 | + |
| 75 | + for group in self.param_groups: |
| 76 | + for p in group['params']: |
| 77 | + if p.grad is None: |
| 78 | + continue |
| 79 | + |
| 80 | + grad = p.grad.data |
| 81 | + if grad.is_sparse: |
| 82 | + raise RuntimeError('diffGrad does not support sparse gradients') |
| 83 | + |
| 84 | + state = self.state[p] |
| 85 | + |
| 86 | + if len(state) == 0: |
| 87 | + state['step'] = 0 |
| 88 | + state['exp_avg'] = torch.zeros_like(p.data) |
| 89 | + state['exp_avg_sq'] = torch.zeros_like(p.data) |
| 90 | + state['previous_grad'] = torch.zeros_like(p.data) |
| 91 | + |
| 92 | + exp_avg, exp_avg_sq, previous_grad = ( |
| 93 | + state['exp_avg'], |
| 94 | + state['exp_avg_sq'], |
| 95 | + state['previous_grad'], |
| 96 | + ) |
| 97 | + beta1, beta2 = group['betas'] |
| 98 | + |
| 99 | + state['step'] += 1 |
| 100 | + |
| 101 | + if group['weight_decay'] != 0: |
| 102 | + grad.add_(group['weight_decay'], p.data) |
| 103 | + |
| 104 | + # Decay the first and second moment running average coefficient |
| 105 | + exp_avg.mul_(beta1).add_(1 - beta1, grad) |
| 106 | + exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
| 107 | + denom = exp_avg_sq.sqrt().add_(group['eps']) |
| 108 | + |
| 109 | + bias_correction1 = 1 - beta1 ** state['step'] |
| 110 | + bias_correction2 = 1 - beta2 ** state['step'] |
| 111 | + |
| 112 | + # compute diffGrad coefficient (dfc) |
| 113 | + diff = abs(previous_grad - grad) |
| 114 | + dfc = 1.0 / (1.0 + torch.exp(-diff)) |
| 115 | + state['previous_grad'] = grad.clone() |
| 116 | + |
| 117 | + # update momentum with dfc |
| 118 | + exp_avg1 = exp_avg * dfc |
| 119 | + |
| 120 | + step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 |
| 121 | + |
| 122 | + p.data.addcdiv_(-step_size, exp_avg1, denom) |
| 123 | + |
| 124 | + return loss |
0 commit comments