|
| 1 | +import torch |
| 2 | +from torch.optim.optimizer import Optimizer |
| 3 | + |
| 4 | +from pytorch_optimizer.base_optimizer import BaseOptimizer |
| 5 | +from pytorch_optimizer.types import CLOSURE, DEFAULTS, LOSS, PARAMETERS |
| 6 | +from pytorch_optimizer.utils import neuron_mean, neuron_norm |
| 7 | + |
| 8 | + |
| 9 | +class Nero(Optimizer, BaseOptimizer): |
| 10 | + """ |
| 11 | + Reference : https://github.com/jxbz/nero |
| 12 | + Example : |
| 13 | + from pytorch_optimizer import Nero |
| 14 | + ... |
| 15 | + model = YourModel() |
| 16 | + optimizer = Nero(model.parameters()) |
| 17 | + ... |
| 18 | + for input, output in data: |
| 19 | + optimizer.zero_grad() |
| 20 | + loss = loss_function(output, model(input)) |
| 21 | + loss.backward() |
| 22 | + optimizer.step() |
| 23 | + """ |
| 24 | + |
| 25 | + def __init__(self, params: PARAMETERS, lr: float = 0.01, beta: float = 0.999, constraints: bool = True): |
| 26 | + """AdamP optimizer |
| 27 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups |
| 28 | + :param lr: float. learning rate |
| 29 | + :param beta: float. coefficients used for computing running averages of gradient and the squared hessian trace |
| 30 | + :param constraints: bool. |
| 31 | + """ |
| 32 | + self.lr = lr |
| 33 | + self.beta = beta |
| 34 | + |
| 35 | + self.validate_parameters() |
| 36 | + |
| 37 | + defaults: DEFAULTS = dict(lr=lr, constraints=constraints) |
| 38 | + super().__init__(params, defaults) |
| 39 | + |
| 40 | + def validate_parameters(self): |
| 41 | + self.validate_learning_rate(self.lr) |
| 42 | + self.validate_beta(self.beta) |
| 43 | + |
| 44 | + @torch.no_grad() |
| 45 | + def reset(self): |
| 46 | + for group in self.param_groups: |
| 47 | + for p in group['params']: |
| 48 | + if group['constraints'] and p.dim() > 1: |
| 49 | + p.sub_(neuron_mean(p)) |
| 50 | + p.div_(neuron_norm(p)) |
| 51 | + |
| 52 | + state = self.state[p] |
| 53 | + |
| 54 | + state['step'] = 0 |
| 55 | + state['exp_avg_sq'] = torch.zeros_like(neuron_norm(p)) |
| 56 | + state['scale'] = neuron_norm(p).mean() |
| 57 | + |
| 58 | + if state['scale'] == 0.0: |
| 59 | + state['scale'] = 0.01 |
| 60 | + |
| 61 | + @torch.no_grad() |
| 62 | + def step(self, closure: CLOSURE = None) -> LOSS: |
| 63 | + loss: LOSS = None |
| 64 | + if closure is not None: |
| 65 | + with torch.enable_grad(): |
| 66 | + loss = closure() |
| 67 | + |
| 68 | + for group in self.param_groups: |
| 69 | + for p in group['params']: |
| 70 | + if p.grad is None: |
| 71 | + continue |
| 72 | + |
| 73 | + grad = p.grad |
| 74 | + if grad.is_sparse: |
| 75 | + raise RuntimeError('Nero does not support sparse gradients') |
| 76 | + |
| 77 | + state = self.state[p] |
| 78 | + if len(state) == 0: |
| 79 | + if group['constraints'] and p.dim() > 1: |
| 80 | + p.sub_(neuron_mean(p)) |
| 81 | + p.div_(neuron_norm(p)) |
| 82 | + |
| 83 | + state['step'] = 0 |
| 84 | + state['exp_avg_sq'] = torch.zeros_like(neuron_norm(p)) |
| 85 | + state['scale'] = neuron_norm(p).mean() |
| 86 | + if state['scale'] == 0.0: |
| 87 | + state['scale'] = 0.01 |
| 88 | + |
| 89 | + state['step'] += 1 |
| 90 | + |
| 91 | + bias_correction: float = 1.0 - self.beta ** state['step'] |
| 92 | + state['exp_avg_sq'] = self.beta * state['exp_avg_sq'] + (1.0 - self.beta) * neuron_norm(grad) ** 2 |
| 93 | + |
| 94 | + grad_normed = grad / (state['exp_avg_sq'] / bias_correction).sqrt() |
| 95 | + grad_normed[torch.isnan(grad_normed)] = 0.0 |
| 96 | + |
| 97 | + p.sub_(group['lr'] * state['scale'] * grad_normed) |
| 98 | + |
| 99 | + if group['constraints'] and p.dim() > 1: |
| 100 | + p.sub_(neuron_mean(p)) |
| 101 | + p.div_(neuron_norm(p)) |
| 102 | + |
| 103 | + return loss |
0 commit comments