|
| 1 | +import math |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +import hyperopt.exceptions |
| 5 | +import numpy as np |
| 6 | +import torch |
| 7 | +from hyperopt import fmin, hp, tpe |
| 8 | +from matplotlib import pyplot as plt |
| 9 | + |
| 10 | +from pytorch_optimizer import OPTIMIZERS |
| 11 | + |
| 12 | + |
| 13 | +def rosenbrock(tensors) -> torch.Tensor: |
| 14 | + """https://en.wikipedia.org/wiki/Test_functions_for_optimization""" |
| 15 | + x, y = tensors |
| 16 | + return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 # fmt: skip |
| 17 | + |
| 18 | + |
| 19 | +def rastrigin(tensors, a: float = 10) -> torch.tensor: |
| 20 | + """https://en.wikipedia.org/wiki/Test_functions_for_optimization""" |
| 21 | + x, y = tensors |
| 22 | + return ( |
| 23 | + a * 2 |
| 24 | + + (x ** 2 - a * torch.cos(x * math.pi * 2)) |
| 25 | + + (y ** 2 - a * torch.cos(y * math.pi * 2)) |
| 26 | + ) # fmt: skip |
| 27 | + |
| 28 | + |
| 29 | +def execute_steps(func, initial_state, optimizer_class, optimizer_config, num_iters: int = 500): |
| 30 | + x = torch.Tensor(initial_state).requires_grad_(True) |
| 31 | + |
| 32 | + if optimizer_class.__name__ == 'Ranger21': |
| 33 | + optimizer_config.update({'num_iterations': num_iters}) |
| 34 | + |
| 35 | + optimizer = optimizer_class([x], **optimizer_config) |
| 36 | + |
| 37 | + steps = np.zeros((2, num_iters + 1), dtype=np.float32) |
| 38 | + steps[:, 0] = np.array(initial_state) |
| 39 | + |
| 40 | + for i in range(1, num_iters + 1): |
| 41 | + optimizer.zero_grad() |
| 42 | + |
| 43 | + output = func(x) |
| 44 | + output.backward(create_graph=True, retain_graph=True) |
| 45 | + |
| 46 | + torch.nn.utils.clip_grad_norm_(x, 1.0) |
| 47 | + optimizer.step() |
| 48 | + |
| 49 | + steps[:, i] = x.detach().numpy() |
| 50 | + |
| 51 | + return steps |
| 52 | + |
| 53 | + |
| 54 | +def objective_rastrigin(params, minimum=(0, 0)): |
| 55 | + steps = execute_steps(rastrigin, (-2.0, 3.5), params['optimizer_class'], {'lr': params['lr']}, 100) |
| 56 | + |
| 57 | + return (steps[0][-1] - minimum[0]) ** 2 + (steps[1][-1] - minimum[1]) ** 2 |
| 58 | + |
| 59 | + |
| 60 | +def objective_rosenbrok(params, minimum=(1.0, 1.0)): |
| 61 | + steps = execute_steps(rastrigin, (-2.0, 2.0), params['optimizer_class'], {'lr': params['lr']}, 100) |
| 62 | + |
| 63 | + return (steps[0][-1] - minimum[0]) ** 2 + (steps[1][-1] - minimum[1]) ** 2 |
| 64 | + |
| 65 | + |
| 66 | +def plot_rastrigin(grad_iter, optimizer_name, lr) -> None: |
| 67 | + x = torch.linspace(-4.5, 4.5, 250) |
| 68 | + y = torch.linspace(-4.5, 4.5, 250) |
| 69 | + |
| 70 | + x, y = torch.meshgrid(x, y) |
| 71 | + z = rastrigin([x, y]) |
| 72 | + |
| 73 | + iter_x, iter_y = grad_iter[0, :], grad_iter[1, :] |
| 74 | + |
| 75 | + fig = plt.figure(figsize=(8, 8)) |
| 76 | + |
| 77 | + ax = fig.add_subplot(1, 1, 1) |
| 78 | + ax.contour(x.numpy(), y.numpy(), z.numpy(), 20, cmap='jet') |
| 79 | + ax.plot(iter_x, iter_y, color='r', marker='x') |
| 80 | + ax.set_title(f'Rastrigin func: {optimizer_name} with {len(iter_x)} iterations, lr={lr:.6f}') |
| 81 | + |
| 82 | + plt.plot(0, 0, 'gD') |
| 83 | + plt.plot(iter_x[-1], iter_y[-1], 'rD') |
| 84 | + plt.savefig(f'../docs/visualizations/rastrigin_{optimizer_name}.png') |
| 85 | + plt.close() |
| 86 | + |
| 87 | + |
| 88 | +def plot_rosenbrok(grad_iter, optimizer_name, lr): |
| 89 | + x = torch.linspace(-2, 2, 250) |
| 90 | + y = torch.linspace(-1, 3, 250) |
| 91 | + |
| 92 | + x, y = torch.meshgrid(x, y) |
| 93 | + z = rosenbrock([x, y]) |
| 94 | + |
| 95 | + iter_x, iter_y = grad_iter[0, :], grad_iter[1, :] |
| 96 | + |
| 97 | + fig = plt.figure(figsize=(8, 8)) |
| 98 | + |
| 99 | + ax = fig.add_subplot(1, 1, 1) |
| 100 | + ax.contour(x.numpy(), y.numpy(), z.numpy(), 90, cmap='jet') |
| 101 | + ax.plot(iter_x, iter_y, color='r', marker='x') |
| 102 | + |
| 103 | + ax.set_title(f'Rosenbrock func: {optimizer_name} with {len(iter_x)} iterations, lr={lr:.6f}') |
| 104 | + plt.plot(1.0, 1.0, 'gD') |
| 105 | + plt.plot(iter_x[-1], iter_y[-1], 'rD') |
| 106 | + plt.savefig(f'../docs/visualizations/rosenbrock_{optimizer_name}.png') |
| 107 | + plt.close() |
| 108 | + |
| 109 | + |
| 110 | +def execute_experiments( |
| 111 | + optimizers, objective, func, plot_func, initial_state, root_path: Path, exp_name: str, seed: int = 42 |
| 112 | +): |
| 113 | + for item in optimizers: |
| 114 | + optimizer_class, lr_low, lr_hi = item |
| 115 | + |
| 116 | + if (root_path / f'{exp_name}_{optimizer_class.__name__}.png').exists(): |
| 117 | + continue |
| 118 | + |
| 119 | + space = { |
| 120 | + 'optimizer_class': hp.choice('optimizer_class', [optimizer_class]), |
| 121 | + 'lr': hp.loguniform('lr', lr_low, lr_hi), |
| 122 | + } |
| 123 | + |
| 124 | + try: |
| 125 | + best = fmin( |
| 126 | + fn=objective, |
| 127 | + space=space, |
| 128 | + algo=tpe.suggest, |
| 129 | + max_evals=200, |
| 130 | + rstate=np.random.default_rng(seed), |
| 131 | + ) |
| 132 | + except hyperopt.exceptions.AllTrialsFailed: |
| 133 | + continue |
| 134 | + |
| 135 | + steps = execute_steps( |
| 136 | + func, |
| 137 | + initial_state, |
| 138 | + optimizer_class, |
| 139 | + {'lr': best['lr']}, |
| 140 | + 500, |
| 141 | + ) |
| 142 | + |
| 143 | + plot_func(steps, optimizer_class.__name__, best['lr']) |
| 144 | + |
| 145 | + |
| 146 | +def main(): |
| 147 | + np.random.seed(42) |
| 148 | + torch.manual_seed(42) |
| 149 | + |
| 150 | + root_path = Path('..') / 'docs' / 'visualizations' |
| 151 | + |
| 152 | + optimizers = [ |
| 153 | + (torch.optim.AdamW, -6, 0.5), |
| 154 | + (torch.optim.Adam, -6, 0.5), |
| 155 | + (torch.optim.SGD, -6, -1.0), |
| 156 | + ] |
| 157 | + |
| 158 | + for optimizer_name, optimizer in OPTIMIZERS.items(): |
| 159 | + if optimizer_name.lower() in {'alig', 'lomo', 'bsam', 'adammini'}: |
| 160 | + continue |
| 161 | + |
| 162 | + optimizers.append((optimizer, -6, 0.2)) |
| 163 | + |
| 164 | + execute_experiments( |
| 165 | + optimizers, |
| 166 | + objective_rastrigin, |
| 167 | + rastrigin, |
| 168 | + plot_rastrigin, |
| 169 | + (-2.0, 3.5), |
| 170 | + root_path, |
| 171 | + 'rastrigin', |
| 172 | + ) |
| 173 | + |
| 174 | + execute_experiments( |
| 175 | + optimizers, |
| 176 | + objective_rosenbrok, |
| 177 | + rosenbrock, |
| 178 | + plot_rosenbrok, |
| 179 | + (-2.0, 2.0), |
| 180 | + root_path, |
| 181 | + 'rosenbrok', |
| 182 | + ) |
0 commit comments