|
| 1 | +import math |
| 2 | + |
| 3 | +import torch |
| 4 | +from torch.optim import Optimizer |
| 5 | + |
| 6 | +from pytorch_optimizer.types import BETAS, CLOSURE, DEFAULTS, PARAMETERS |
| 7 | + |
| 8 | + |
| 9 | +class Lamb(Optimizer): |
| 10 | + """ |
| 11 | + Reference : https://github.com/cybertronai/pytorch-lamb/blob/master/pytorch_lamb/lamb.py |
| 12 | + Example : |
| 13 | + from pytorch_optimizer import Lamb |
| 14 | + ... |
| 15 | + model = YourModel() |
| 16 | + optimizer = Lamb(model.parameters()) |
| 17 | + ... |
| 18 | + for input, output in data: |
| 19 | + optimizer.zero_grad() |
| 20 | + loss = loss_function(output, model(input)) |
| 21 | + loss.backward() |
| 22 | + optimizer.step() |
| 23 | + """ |
| 24 | + |
| 25 | + clamp: float = 10.0 |
| 26 | + |
| 27 | + def __init__( |
| 28 | + self, |
| 29 | + params: PARAMETERS, |
| 30 | + lr: float = 1e-3, |
| 31 | + betas: BETAS = (0.9, 0.999), |
| 32 | + eps: float = 1e-6, |
| 33 | + weight_decay: float = 0.0, |
| 34 | + adam: bool = False, |
| 35 | + adamd_debias_term: bool = False, |
| 36 | + pre_norm: bool = False, |
| 37 | + ): |
| 38 | + """ |
| 39 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups |
| 40 | + :param lr: float. learning rate |
| 41 | + :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace |
| 42 | + :param eps: float. term added to the denominator to improve numerical stability |
| 43 | + :param weight_decay: float. weight decay (L2 penalty) |
| 44 | + :param adamd_debias_term: bool. Only correct the denominator to avoid inflating step sizes early in training |
| 45 | + :param pre_norm: bool. perform pre-normalization of all gradients |
| 46 | + """ |
| 47 | + self.lr = lr |
| 48 | + self.betas = betas |
| 49 | + self.weight_decay = weight_decay |
| 50 | + self.eps = eps |
| 51 | + self.adam = adam |
| 52 | + self.adamd_debias_term = adamd_debias_term |
| 53 | + self.pre_norm = pre_norm |
| 54 | + |
| 55 | + self.check_valid_parameters() |
| 56 | + |
| 57 | + defaults: DEFAULTS = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
| 58 | + |
| 59 | + super().__init__(params, defaults) |
| 60 | + |
| 61 | + def check_valid_parameters(self): |
| 62 | + if self.lr < 0.0: |
| 63 | + raise ValueError(f'Invalid learning rate : {self.lr}') |
| 64 | + if not 0.0 <= self.betas[0] < 1.0: |
| 65 | + raise ValueError(f'Invalid beta_0 : {self.betas[0]}') |
| 66 | + if not 0.0 <= self.betas[1] < 1.0: |
| 67 | + raise ValueError(f'Invalid beta_1 : {self.betas[1]}') |
| 68 | + if self.weight_decay < 0.0: |
| 69 | + raise ValueError(f'Invalid weight_decay : {self.weight_decay}') |
| 70 | + if self.eps < 0.0: |
| 71 | + raise ValueError(f'Invalid eps : {self.eps}') |
| 72 | + |
| 73 | + def get_gradient_norm(self) -> float: |
| 74 | + norm_sq: float = 0.0 |
| 75 | + for group in self.param_groups: |
| 76 | + for p in group['params']: |
| 77 | + if p.grad is None: |
| 78 | + continue |
| 79 | + |
| 80 | + norm_sq += torch.linalg.norm(p.grad).item() ** 2 |
| 81 | + |
| 82 | + norm = math.sqrt(norm_sq) |
| 83 | + |
| 84 | + return norm |
| 85 | + |
| 86 | + def step(self, closure: CLOSURE = None) -> float: |
| 87 | + loss = None |
| 88 | + if closure is not None: |
| 89 | + loss = closure() |
| 90 | + |
| 91 | + grad_norm: float = 1.0 |
| 92 | + if self.pre_norm: |
| 93 | + grad_norm = self.get_gradient_norm() |
| 94 | + |
| 95 | + for group in self.param_groups: |
| 96 | + for p in group['params']: |
| 97 | + if p.grad is None: |
| 98 | + continue |
| 99 | + |
| 100 | + if self.pre_norm: |
| 101 | + p.grad /= grad_norm |
| 102 | + |
| 103 | + grad = p.grad.data |
| 104 | + if grad.is_sparse: |
| 105 | + raise RuntimeError('[-] Lamb does not support sparse gradients, consider SparseAdam instead.') |
| 106 | + |
| 107 | + state = self.state[p] |
| 108 | + |
| 109 | + if len(state) == 0: |
| 110 | + state['step'] = 0 |
| 111 | + state['exp_avg'] = torch.zeros_like(p.data) |
| 112 | + state['exp_avg_sq'] = torch.zeros_like(p.data) |
| 113 | + |
| 114 | + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
| 115 | + beta1, beta2 = group['betas'] |
| 116 | + |
| 117 | + state['step'] += 1 |
| 118 | + |
| 119 | + exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) |
| 120 | + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) |
| 121 | + |
| 122 | + step_size = group['lr'] |
| 123 | + |
| 124 | + weight_norm = p.data.pow(2).sum().sqrt().clamp(0, self.clamp) |
| 125 | + |
| 126 | + adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps']) |
| 127 | + if group['weight_decay'] != 0: |
| 128 | + adam_step.add_(p.data, alpha=group['weight_decay']) |
| 129 | + |
| 130 | + adam_norm = adam_step.pow(2).sum().sqrt() |
| 131 | + if weight_norm == 0 or adam_norm == 0: |
| 132 | + trust_ratio = 1.0 |
| 133 | + else: |
| 134 | + trust_ratio = weight_norm / adam_norm |
| 135 | + |
| 136 | + state['weight_norm'] = weight_norm |
| 137 | + state['adam_norm'] = adam_norm |
| 138 | + state['trust_ratio'] = trust_ratio |
| 139 | + |
| 140 | + if self.adam: |
| 141 | + trust_ratio = 1.0 |
| 142 | + |
| 143 | + p.data.add_(adam_step, alpha=-step_size * trust_ratio) |
| 144 | + |
| 145 | + return loss |
0 commit comments