|
| 1 | +from pytorch_optimizer.adabelief import AdaBelief |
| 2 | +from pytorch_optimizer.adabound import AdaBound |
| 3 | +from pytorch_optimizer.adahessian import AdaHessian |
| 4 | +from pytorch_optimizer.adamp import AdamP |
| 5 | +from pytorch_optimizer.diffgrad import DiffGrad |
| 6 | +from pytorch_optimizer.diffrgrad import DiffRGrad |
| 7 | +from pytorch_optimizer.fp16 import SafeFP16Optimizer |
| 8 | +from pytorch_optimizer.madgrad import MADGRAD |
| 9 | +from pytorch_optimizer.radam import RAdam |
| 10 | +from pytorch_optimizer.ranger import Ranger |
| 11 | +from pytorch_optimizer.ranger21 import Ranger21 |
| 12 | +from pytorch_optimizer.sgdp import SGDP |
| 13 | + |
| 14 | + |
| 15 | +def load_optimizers(optimizer: str, use_fp16: bool = False): |
| 16 | + optimizer: str = optimizer.lower() |
| 17 | + |
| 18 | + if optimizer == 'adamp': |
| 19 | + opt = AdamP |
| 20 | + elif optimizer == 'ranger': |
| 21 | + opt = Ranger |
| 22 | + elif optimizer == 'ranger21': |
| 23 | + opt = Ranger21 |
| 24 | + elif optimizer == 'sgdp': |
| 25 | + opt = SGDP |
| 26 | + elif optimizer == 'radam': |
| 27 | + opt = RAdam |
| 28 | + elif optimizer == 'adabelief': |
| 29 | + opt = AdaBelief |
| 30 | + elif optimizer == 'adabound': |
| 31 | + opt = AdaBound |
| 32 | + elif optimizer == 'madgrad': |
| 33 | + opt = MADGRAD |
| 34 | + elif optimizer == 'diffrgrad': |
| 35 | + opt = DiffRGrad |
| 36 | + elif optimizer == 'diffgrad': |
| 37 | + opt = DiffGrad |
| 38 | + elif optimizer == 'diffgrad': |
| 39 | + opt = DiffGrad |
| 40 | + elif optimizer == 'adahessian': |
| 41 | + opt = AdaHessian |
| 42 | + else: |
| 43 | + raise NotImplementedError(f'[-] not implemented optimizer : {optimizer}') |
| 44 | + |
| 45 | + if use_fp16: |
| 46 | + opt = SafeFP16Optimizer(opt) |
| 47 | + |
| 48 | + return opt |
0 commit comments