|
| 1 | +from typing import Callable, Optional |
| 2 | + |
| 3 | +import torch |
| 4 | +from torch.optim.optimizer import Optimizer |
| 5 | + |
| 6 | +from pytorch_optimizer.base.exception import NoSparseGradientError |
| 7 | +from pytorch_optimizer.base.optimizer import BaseOptimizer |
| 8 | +from pytorch_optimizer.base.types import CLOSURE, DEFAULTS, LOSS, PARAMETERS |
| 9 | + |
| 10 | + |
| 11 | +class AliG(Optimizer, BaseOptimizer): |
| 12 | + r"""Adaptive Learning Rates for Interpolation with Gradients. |
| 13 | +
|
| 14 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. |
| 15 | + :param max_lr: Optional[float]. max learning rate. |
| 16 | + :param projection_fn : Callable. projection function to enforce constraints. |
| 17 | + :param momentum: float. momentum. |
| 18 | + :param adjusted_momentum: bool. if True, use pytorch-like momentum, instead of standard Nesterov momentum. |
| 19 | + :param eps: float. term added to the denominator to improve numerical stability. |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + params: PARAMETERS, |
| 25 | + max_lr: Optional[float] = None, |
| 26 | + projection_fn: Optional[Callable] = None, |
| 27 | + momentum: float = 0.0, |
| 28 | + adjusted_momentum: bool = False, |
| 29 | + eps: float = 1e-5, |
| 30 | + ): |
| 31 | + self.max_lr = max_lr |
| 32 | + self.projection_fn = projection_fn |
| 33 | + self.momentum = momentum |
| 34 | + self.adjusted_momentum = adjusted_momentum |
| 35 | + self.eps = eps |
| 36 | + |
| 37 | + self.validate_parameters() |
| 38 | + |
| 39 | + defaults: DEFAULTS = {'max_lr': max_lr, 'momentum': momentum} |
| 40 | + super().__init__(params, defaults) |
| 41 | + |
| 42 | + if self.projection_fn is not None: |
| 43 | + self.projection_fn() |
| 44 | + |
| 45 | + def validate_parameters(self): |
| 46 | + self.validate_momentum(self.momentum) |
| 47 | + self.validate_epsilon(self.eps) |
| 48 | + |
| 49 | + @property |
| 50 | + def __str__(self) -> str: |
| 51 | + return 'AliG' |
| 52 | + |
| 53 | + @torch.no_grad() |
| 54 | + def reset(self): |
| 55 | + for group in self.param_groups: |
| 56 | + for p in group['params']: |
| 57 | + state = self.state[p] |
| 58 | + |
| 59 | + state['momentum_buffer'] = torch.zeros_like(p) |
| 60 | + |
| 61 | + @torch.no_grad() |
| 62 | + def compute_step_size(self, loss: float) -> float: |
| 63 | + r"""Compute step_size.""" |
| 64 | + global_grad_norm: float = 0 |
| 65 | + |
| 66 | + for group in self.param_groups: |
| 67 | + for p in group['params']: |
| 68 | + if p.grad is not None: |
| 69 | + global_grad_norm += p.grad.norm().pow(2).item() |
| 70 | + |
| 71 | + return loss / (global_grad_norm + self.eps) |
| 72 | + |
| 73 | + @torch.no_grad() |
| 74 | + def step(self, closure: CLOSURE = None) -> LOSS: |
| 75 | + if closure is None: |
| 76 | + raise ValueError('[-] AliG optimizer needs closure. (eg. `optimizer.step(lambda: float(loss))`).') |
| 77 | + |
| 78 | + loss = closure() |
| 79 | + |
| 80 | + un_clipped_step_size: float = self.compute_step_size(loss) |
| 81 | + |
| 82 | + for group in self.param_groups: |
| 83 | + step_size = group['step_size'] = ( |
| 84 | + min(un_clipped_step_size, group['max_lr']) if group['max_lr'] is not None else un_clipped_step_size |
| 85 | + ) |
| 86 | + momentum = group['momentum'] |
| 87 | + |
| 88 | + for p in group['params']: |
| 89 | + if p.grad is None: |
| 90 | + continue |
| 91 | + |
| 92 | + grad = p.grad |
| 93 | + if grad.is_sparse: |
| 94 | + raise NoSparseGradientError(self.__str__) |
| 95 | + |
| 96 | + state = self.state[p] |
| 97 | + if len(state) == 0 and momentum > 0.0: |
| 98 | + state['momentum_buffer'] = torch.zeros_like(p) |
| 99 | + |
| 100 | + p.add_(grad, alpha=-step_size) |
| 101 | + |
| 102 | + if momentum > 0.0: |
| 103 | + buffer = state['momentum_buffer'] |
| 104 | + |
| 105 | + if self.adjusted_momentum: |
| 106 | + buffer.mul_(momentum).sub_(grad) |
| 107 | + p.add_(buffer, alpha=step_size * momentum) |
| 108 | + else: |
| 109 | + buffer.mul_(momentum).add_(grad, alpha=-step_size) |
| 110 | + p.add_(buffer, alpha=momentum) |
| 111 | + |
| 112 | + if self.projection_fn is not None: |
| 113 | + self.projection_fn() |
| 114 | + |
| 115 | + return loss |
0 commit comments