|
| 1 | +import torch |
| 2 | +from torch.optim.optimizer import Optimizer |
| 3 | + |
| 4 | +from pytorch_optimizer.base.exception import NoSparseGradientError |
| 5 | +from pytorch_optimizer.base.optimizer import BaseOptimizer |
| 6 | +from pytorch_optimizer.base.types import CLOSURE, DEFAULTS, LOSS, PARAMETERS |
| 7 | + |
| 8 | + |
| 9 | +class PID(Optimizer, BaseOptimizer): |
| 10 | + r"""A PID Controller Approach for Stochastic Optimization of Deep Networks. |
| 11 | +
|
| 12 | + :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. |
| 13 | + :param lr: float. learning rate. |
| 14 | + :param momentum: float. momentum factor. |
| 15 | + :param dampening: float. dampening for momentum. |
| 16 | + :param derivative: float. D part of the PID. |
| 17 | + :param integral: float. I part of the PID. |
| 18 | + :param weight_decay: float. weight decay (L2 penalty). |
| 19 | + :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + params: PARAMETERS, |
| 25 | + lr: float = 1e-3, |
| 26 | + momentum: float = 0.0, |
| 27 | + dampening: float = 0.0, |
| 28 | + derivative: float = 10.0, |
| 29 | + integral: float = 5.0, |
| 30 | + weight_decay: float = 0.0, |
| 31 | + weight_decouple: bool = False, |
| 32 | + ): |
| 33 | + self.lr = lr |
| 34 | + self.momentum = momentum |
| 35 | + self.dampening = dampening |
| 36 | + self.derivative = derivative |
| 37 | + self.integral = integral |
| 38 | + self.weight_decay = weight_decay |
| 39 | + |
| 40 | + self.validate_parameters() |
| 41 | + |
| 42 | + defaults: DEFAULTS = { |
| 43 | + 'lr': lr, |
| 44 | + 'momentum': momentum, |
| 45 | + 'dampening': dampening, |
| 46 | + 'derivative': derivative, |
| 47 | + 'integral': integral, |
| 48 | + 'weight_decay': weight_decay, |
| 49 | + 'weight_decouple': weight_decouple, |
| 50 | + } |
| 51 | + super().__init__(params, defaults) |
| 52 | + |
| 53 | + def validate_parameters(self): |
| 54 | + self.validate_learning_rate(self.lr) |
| 55 | + self.validate_momentum(self.momentum) |
| 56 | + self.validate_weight_decay(self.weight_decay) |
| 57 | + |
| 58 | + def __str__(self) -> str: |
| 59 | + return 'PID' |
| 60 | + |
| 61 | + @torch.no_grad() |
| 62 | + def reset(self): |
| 63 | + for group in self.param_groups: |
| 64 | + group['step'] = 0 |
| 65 | + for p in group['params']: |
| 66 | + state = self.state[p] |
| 67 | + |
| 68 | + if group['momentum'] > 0.0: |
| 69 | + state['grad_buffer'] = torch.zeros_like(p) |
| 70 | + state['i_buffer'] = torch.zeros_like(p) |
| 71 | + state['d_buffer'] = torch.zeros_like(p) |
| 72 | + |
| 73 | + @torch.no_grad() |
| 74 | + def step(self, closure: CLOSURE = None) -> LOSS: |
| 75 | + loss: LOSS = None |
| 76 | + if closure is not None: |
| 77 | + with torch.enable_grad(): |
| 78 | + loss = closure() |
| 79 | + |
| 80 | + for group in self.param_groups: |
| 81 | + if 'step' in group: |
| 82 | + group['step'] += 1 |
| 83 | + else: |
| 84 | + group['step'] = 1 |
| 85 | + |
| 86 | + for p in group['params']: |
| 87 | + if p.grad is None: |
| 88 | + continue |
| 89 | + |
| 90 | + grad = p.grad |
| 91 | + if grad.is_sparse: |
| 92 | + raise NoSparseGradientError(str(self)) |
| 93 | + |
| 94 | + state = self.state[p] |
| 95 | + |
| 96 | + if len(state) == 0 and group['momentum'] > 0.0: |
| 97 | + state['grad_buffer'] = torch.zeros_like(p) |
| 98 | + state['i_buffer'] = torch.zeros_like(p) |
| 99 | + state['d_buffer'] = torch.zeros_like(p) |
| 100 | + |
| 101 | + if group['weight_decouple']: |
| 102 | + p.mul_(1.0 - group['weight_decay'] * group['lr']) |
| 103 | + elif group['weight_decay'] > 0.0: |
| 104 | + grad.add_(p, alpha=group['weight_decay']) |
| 105 | + |
| 106 | + if group['momentum'] > 0.0: |
| 107 | + i_buf = state['i_buffer'] |
| 108 | + i_buf.mul_(group['momentum']).add_(grad, alpha=1.0 - group['dampening']) |
| 109 | + |
| 110 | + g_buf, d_buf = state['grad_buffer'], state['d_buffer'] |
| 111 | + d_buf.mul_(group['momentum']) |
| 112 | + |
| 113 | + if group['step'] > 1: |
| 114 | + d_buf.add_(grad - g_buf, alpha=1.0 - group['momentum']) |
| 115 | + g_buf.copy_(grad) |
| 116 | + |
| 117 | + grad.add_(i_buf, alpha=group['integral']).add_(d_buf, alpha=group['derivative']) |
| 118 | + |
| 119 | + p.add_(grad, alpha=-group['lr']) |
| 120 | + |
| 121 | + return loss |
0 commit comments