|
10 | 10 |
|
11 | 11 | **pytorch-optimizer** is optimizer & lr scheduler collections in PyTorch. |
12 | 12 | I just re-implemented (speed & memory tweaks, plug-ins) the algorithm while based on the original paper. Also, It includes useful and practical optimization ideas. |
13 | | -Currently, **62 optimizers (+ `bitsandbytes`)**, **10 lr schedulers**, and **13 loss functions** are supported! |
| 13 | +Currently, **62 optimizers (+ `bitsandbytes`)**, **11 lr schedulers**, and **13 loss functions** are supported! |
14 | 14 |
|
15 | 15 | Highly inspired by [pytorch-optimizer](https://github.com/jettify/pytorch-optimizer). |
16 | 16 |
|
@@ -171,10 +171,11 @@ from pytorch_optimizer import get_supported_lr_schedulers |
171 | 171 | supported_lr_schedulers = get_supported_lr_schedulers() |
172 | 172 | ``` |
173 | 173 |
|
174 | | -| LR Scheduler | Description | Official Code | Paper | Citation | |
175 | | -|-----------------|---------------------------------------------------------------------------------|---------------|------------------------------------|------------------------------------------------------------------------------| |
176 | | -| Explore-Exploit | *Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule* | | <https://arxiv.org/abs/2003.03977> | [cite](https://ui.adsabs.harvard.edu/abs/2020arXiv200303977I/exportcitation) | |
177 | | -| Chebyshev | *Acceleration via Fractal Learning Rate Schedules* | | <https://arxiv.org/abs/2103.01338> | [cite](https://ui.adsabs.harvard.edu/abs/2021arXiv210301338A/exportcitation) | |
| 174 | +| LR Scheduler | Description | Official Code | Paper | Citation | |
| 175 | +|-----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------| |
| 176 | +| Explore-Exploit | *Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule* | | <https://arxiv.org/abs/2003.03977> | [cite](https://ui.adsabs.harvard.edu/abs/2020arXiv200303977I/exportcitation) | |
| 177 | +| Chebyshev | *Acceleration via Fractal Learning Rate Schedules* | | <https://arxiv.org/abs/2103.01338> | [cite](https://ui.adsabs.harvard.edu/abs/2021arXiv210301338A/exportcitation) | |
| 178 | +| REX | *Revisiting Budgeted Training with an Improved Schedule* | [github](https://github.com/Nerogar/OneTrainer/blob/2c6f34ea0838e5a86774a1cf75093d7e97c70f03/modules/util/lr_scheduler_util.py#L66) | <https://arxiv.org/abs/2107.04197> | [cite](https://ui.adsabs.harvard.edu/abs/2021arXiv210704197C/exportcitation) | |
178 | 179 |
|
179 | 180 | ## Supported Loss Function |
180 | 181 |
|
|
0 commit comments