88from tests .utils import Example , simple_parameter
99
1010
11- @pytest .mark .cfg
1211@pytest .mark .parametrize ('optimizer_name' , VALID_OPTIMIZER_NAMES )
1312def test_learning_rate (optimizer_name ):
1413 if optimizer_name in ('alig' ,):
@@ -24,7 +23,6 @@ def test_learning_rate(optimizer_name):
2423 optimizer (None , ** config )
2524
2625
27- @pytest .mark .cfg
2826@pytest .mark .parametrize ('optimizer_name' , VALID_OPTIMIZER_NAMES )
2927def test_epsilon (optimizer_name ):
3028 if optimizer_name in ('nero' , 'shampoo' , 'scalableshampoo' , 'dadaptsgd' , 'adafactor' , 'lion' ):
@@ -42,7 +40,6 @@ def test_epsilon(optimizer_name):
4240 assert str (error_info .value ) == '[-] epsilon -1e-06 must be non-negative'
4341
4442
45- @pytest .mark .cfg
4643def test_shampoo_epsilon ():
4744 shampoo = load_optimizer ('Shampoo' )
4845 scalable_shampoo = load_optimizer ('ScalableShampoo' )
@@ -57,7 +54,6 @@ def test_shampoo_epsilon():
5754 shampoo (None , matrix_eps = - 1e-6 )
5855
5956
60- @pytest .mark .cfg
6157def test_adafactor_epsilon ():
6258 adafactor = load_optimizer ('adafactor' )
6359
@@ -68,7 +64,6 @@ def test_adafactor_epsilon():
6864 adafactor (None , eps2 = - 1e-6 )
6965
7066
71- @pytest .mark .cfg
7267@pytest .mark .parametrize ('optimizer_name' , VALID_OPTIMIZER_NAMES )
7368def test_weight_decay (optimizer_name ):
7469 if optimizer_name in ('nero' , 'alig' ):
@@ -86,7 +81,6 @@ def test_weight_decay(optimizer_name):
8681 assert str (error_info .value ) == '[-] weight_decay -0.001 must be non-negative'
8782
8883
89- @pytest .mark .cfg
9084@pytest .mark .parametrize ('optimizer_name' , ['apollo' ])
9185def test_weight_decay_type (optimizer_name ):
9286 optimizer = load_optimizer (optimizer_name )
@@ -95,7 +89,6 @@ def test_weight_decay_type(optimizer_name):
9589 optimizer (None , weight_decay_type = 'dummy' )
9690
9791
98- @pytest .mark .cfg
9992@pytest .mark .parametrize ('optimizer_name' , ['apollo' ])
10093def test_rebound (optimizer_name ):
10194 optimizer = load_optimizer (optimizer_name )
@@ -104,55 +97,48 @@ def test_rebound(optimizer_name):
10497 optimizer (None , rebound = 'dummy' )
10598
10699
107- @pytest .mark .cfg
108100@pytest .mark .parametrize ('optimizer_name' , ['adamp' , 'sgdp' ])
109101def test_wd_ratio (optimizer_name ):
110102 optimizer = load_optimizer (optimizer_name )
111103 with pytest .raises (ValueError ):
112104 optimizer (None , wd_ratio = - 1e-3 )
113105
114106
115- @pytest .mark .cfg
116107@pytest .mark .parametrize ('optimizer_name' , ['lars' ])
117108def test_trust_coefficient (optimizer_name ):
118109 optimizer = load_optimizer (optimizer_name )
119110 with pytest .raises (ValueError ):
120111 optimizer (None , trust_coefficient = - 1e-3 )
121112
122113
123- @pytest .mark .cfg
124114@pytest .mark .parametrize ('optimizer_name' , ['madgrad' , 'lars' ])
125115def test_momentum (optimizer_name ):
126116 optimizer = load_optimizer (optimizer_name )
127117 with pytest .raises (ValueError ):
128118 optimizer (None , momentum = - 1e-3 )
129119
130120
131- @pytest .mark .cfg
132121@pytest .mark .parametrize ('optimizer_name' , ['ranger' ])
133122def test_lookahead_k (optimizer_name ):
134123 optimizer = load_optimizer (optimizer_name )
135124 with pytest .raises (ValueError ):
136125 optimizer (None , k = - 1 )
137126
138127
139- @pytest .mark .cfg
140128@pytest .mark .parametrize ('optimizer_name' , ['ranger21' ])
141129def test_beta0 (optimizer_name ):
142130 optimizer = load_optimizer (optimizer_name )
143131 with pytest .raises (ValueError ):
144132 optimizer (None , num_iterations = 200 , beta0 = - 0.1 )
145133
146134
147- @pytest .mark .cfg
148135@pytest .mark .parametrize ('optimizer_name' , ['nero' , 'apollo' ])
149136def test_beta (optimizer_name ):
150137 optimizer = load_optimizer (optimizer_name )
151138 with pytest .raises (ValueError ):
152139 optimizer (None , beta = - 0.1 )
153140
154141
155- @pytest .mark .cfg
156142@pytest .mark .parametrize ('optimizer_name' , BETA_OPTIMIZER_NAMES )
157143def test_betas (optimizer_name ):
158144 optimizer = load_optimizer (optimizer_name )
@@ -174,7 +160,6 @@ def test_betas(optimizer_name):
174160 optimizer (None , betas = (0.1 , 0.1 , - 0.1 ))
175161
176162
177- @pytest .mark .cfg
178163def test_reduction ():
179164 parameters = Example ().parameters ()
180165 optimizer = load_optimizer ('adamp' )(parameters )
@@ -183,7 +168,6 @@ def test_reduction():
183168 PCGrad (optimizer , reduction = 'wrong' )
184169
185170
186- @pytest .mark .cfg
187171@pytest .mark .parametrize ('optimizer_name' , ['scalableshampoo' , 'shampoo' ])
188172def test_update_frequency (optimizer_name ):
189173 optimizer = load_optimizer (optimizer_name )
@@ -199,21 +183,18 @@ def test_update_frequency(optimizer_name):
199183 optimizer (None , preconditioning_compute_steps = - 1 )
200184
201185
202- @pytest .mark .cfg
203186@pytest .mark .parametrize ('optimizer_name' , ['adan' , 'lamb' ])
204187def test_norm (optimizer_name ):
205188 optimizer = load_optimizer (optimizer_name )
206189 with pytest .raises (ValueError ):
207190 optimizer (None , max_grad_norm = - 0.1 )
208191
209192
210- @pytest .mark .cfg
211193def test_sam_parameters ():
212194 with pytest .raises (ValueError , match = '' ):
213195 SAM (None , load_optimizer ('adamp' ), rho = - 0.1 )
214196
215197
216- @pytest .mark .cfg
217198def test_lookahead_parameters ():
218199 param = simple_parameter ()
219200 optimizer = load_optimizer ('adamp' )([param ])
@@ -235,7 +216,6 @@ def test_lookahead_parameters():
235216 Lookahead (optimizer , pullback_momentum = 'invalid' )
236217
237218
238- @pytest .mark .cfg
239219def test_sam_methods ():
240220 param = simple_parameter ()
241221
@@ -244,7 +224,6 @@ def test_sam_methods():
244224 optimizer .load_state_dict (optimizer .state_dict ())
245225
246226
247- @pytest .mark .cfg
248227def test_safe_fp16_methods ():
249228 param = simple_parameter ()
250229
@@ -265,14 +244,12 @@ def test_safe_fp16_methods():
265244 assert optimizer .loss_scale == 2.0 ** (15 - 1 )
266245
267246
268- @pytest .mark .cfg
269247def test_ranger21_warm_methods ():
270248 assert Ranger21 .build_warm_up_iterations (1000 , 0.999 ) == 220
271249 assert Ranger21 .build_warm_up_iterations (4500 , 0.999 ) == 2000
272250 assert Ranger21 .build_warm_down_iterations (1000 ) == 280
273251
274252
275- @pytest .mark .cfg
276253@pytest .mark .parametrize ('optimizer' , ['ranger21' , 'adai' ])
277254def test_size_of_parameter (optimizer ):
278255 param = simple_parameter (require_grad = False )
@@ -282,7 +259,6 @@ def test_size_of_parameter(optimizer):
282259 load_optimizer (optimizer )([param ], 1 ).step ()
283260
284261
285- @pytest .mark .cfg
286262def test_ranger21_closure ():
287263 model : nn .Module = Example ()
288264 optimizer = load_optimizer ('ranger21' )(model .parameters (), num_iterations = 100 , betas = (0.9 , 1e-9 ))
@@ -297,7 +273,6 @@ def closure():
297273 optimizer .step (closure )
298274
299275
300- @pytest .mark .cfg
301276def test_adafactor_reset ():
302277 param = torch .zeros (1 ).requires_grad_ (True )
303278 param .grad = torch .zeros (1 )
@@ -306,7 +281,6 @@ def test_adafactor_reset():
306281 optimizer .reset ()
307282
308283
309- @pytest .mark .cfg
310284def test_adafactor_get_lr ():
311285 model : nn .Module = Example ()
312286
0 commit comments