|
| 1 | +{ |
| 2 | + "cell_id": 15939251759909380531, |
| 3 | + "cells": [ |
| 4 | + { |
| 5 | + "cell_id": 9909884154184314133, |
| 6 | + "cell_origin": "client", |
| 7 | + "cell_type": "latex", |
| 8 | + "cells": [ |
| 9 | + { |
| 10 | + "cell_id": 11121169234497922857, |
| 11 | + "cell_origin": "client", |
| 12 | + "cell_type": "latex_view", |
| 13 | + "source": "\\algorithm{slot_asym}{Anti-symmetrise or symmetrise an expression in indicated index slots}\n\nAnti-symmetrise or symmetrise (depending on the \\verb|antisymmetric| flag) a product or tensor in the indicated indices,\nwhere the indices are given as slot positions. This complements the \\algo{asym} algorithm, which instead takes the\nindex names over which to (anti-)symmetrise." |
| 14 | + } |
| 15 | + ], |
| 16 | + "hidden": true, |
| 17 | + "source": "\\algorithm{slot_asym}{Anti-symmetrise or symmetrise an expression in indicated index slots}\n\nAnti-symmetrise or symmetrise (depending on the \\verb|antisymmetric| flag) a product or tensor in the indicated indices,\nwhere the indices are given as slot positions. This complements the \\algo{asym} algorithm, which instead takes the\nindex names over which to (anti-)symmetrise." |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_id": 1631820596417225138, |
| 21 | + "cell_origin": "client", |
| 22 | + "cell_type": "input", |
| 23 | + "cells": [ |
| 24 | + { |
| 25 | + "cell_id": 7595867900720961056, |
| 26 | + "cell_origin": "server", |
| 27 | + "cell_type": "latex_view", |
| 28 | + "cells": [ |
| 29 | + { |
| 30 | + "cell_id": 13265193798604235312, |
| 31 | + "cell_origin": "server", |
| 32 | + "cell_type": "input_form", |
| 33 | + "source": "A_{m n} B_{p q}" |
| 34 | + } |
| 35 | + ], |
| 36 | + "source": "\\begin{dmath*}{}A_{m n} B_{p q}\\end{dmath*}" |
| 37 | + } |
| 38 | + ], |
| 39 | + "source": "ex:=A_{m n} B_{p q};" |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_id": 15329301797986921853, |
| 43 | + "cell_origin": "client", |
| 44 | + "cell_type": "input", |
| 45 | + "cells": [ |
| 46 | + { |
| 47 | + "cell_id": 6618699822479866787, |
| 48 | + "cell_origin": "server", |
| 49 | + "cell_type": "latex_view", |
| 50 | + "cells": [ |
| 51 | + { |
| 52 | + "cell_id": 4925730957034195862, |
| 53 | + "cell_origin": "server", |
| 54 | + "cell_type": "input_form", |
| 55 | + "source": " 1/2 A_{m n} B_{p q} - 1/2 A_{m p} B_{n q}" |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": "\\begin{dmath*}{}\\frac{1}{2}A_{m n} B_{p q} - \\frac{1}{2}A_{m p} B_{n q}\\end{dmath*}" |
| 59 | + } |
| 60 | + ], |
| 61 | + "source": "slot_asym(_, [1,2]);" |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_id": 2136548790978716924, |
| 65 | + "cell_origin": "client", |
| 66 | + "cell_type": "latex", |
| 67 | + "cells": [ |
| 68 | + { |
| 69 | + "cell_id": 9595072634954805885, |
| 70 | + "cell_origin": "client", |
| 71 | + "cell_type": "latex_view", |
| 72 | + "source": "If you want to \\emph{symmetrise} in the indicated objects instead, use the \\verb|antisymmetric=False| flag:" |
| 73 | + } |
| 74 | + ], |
| 75 | + "hidden": true, |
| 76 | + "source": "If you want to \\emph{symmetrise} in the indicated objects instead, use the \\verb|antisymmetric=False| flag:" |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_id": 341154554226938963, |
| 80 | + "cell_origin": "client", |
| 81 | + "cell_type": "input", |
| 82 | + "cells": [ |
| 83 | + { |
| 84 | + "cell_id": 10010981841376155594, |
| 85 | + "cell_origin": "server", |
| 86 | + "cell_type": "latex_view", |
| 87 | + "cells": [ |
| 88 | + { |
| 89 | + "cell_id": 1454030977596719820, |
| 90 | + "cell_origin": "server", |
| 91 | + "cell_type": "input_form", |
| 92 | + "source": "A_{m n} B_{p q}" |
| 93 | + } |
| 94 | + ], |
| 95 | + "source": "\\begin{dmath*}{}A_{m n} B_{p q}\\end{dmath*}" |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_id": 13362812056189562810, |
| 99 | + "cell_origin": "server", |
| 100 | + "cell_type": "latex_view", |
| 101 | + "cells": [ |
| 102 | + { |
| 103 | + "cell_id": 6588625381382353233, |
| 104 | + "cell_origin": "server", |
| 105 | + "cell_type": "input_form", |
| 106 | + "source": " 1/2 A_{m n} B_{p q} + 1/2 A_{m p} B_{n q}" |
| 107 | + } |
| 108 | + ], |
| 109 | + "source": "\\begin{dmath*}{}\\frac{1}{2}A_{m n} B_{p q}+\\frac{1}{2}A_{m p} B_{n q}\\end{dmath*}" |
| 110 | + } |
| 111 | + ], |
| 112 | + "source": "ex:=A_{m n} B_{p q};\nslot_asym(_, [1,2], antisymmetric=False);" |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_id": 5279739485549689433, |
| 116 | + "cell_origin": "client", |
| 117 | + "cell_type": "input", |
| 118 | + "source": "" |
| 119 | + } |
| 120 | + ], |
| 121 | + "description": "Cadabra JSON notebook format", |
| 122 | + "version": 1.0 |
| 123 | +} |
0 commit comments