|
1 | 1 | { |
2 | | - "cells" : |
3 | | - [ |
| 2 | + "cell_id": 12201017813844474228, |
| 3 | + "cells": [ |
4 | 4 | { |
5 | | - "cell_origin" : "client", |
6 | | - "cell_type" : "latex", |
7 | | - "cells" : |
8 | | - [ |
| 5 | + "cell_id": 11200548926868858386, |
| 6 | + "cell_origin": "client", |
| 7 | + "cell_type": "latex", |
| 8 | + "cells": [ |
9 | 9 | { |
10 | | - "cell_origin" : "client", |
11 | | - "cell_type" : "latex_view", |
12 | | - "source" : "\\algorithm{eliminate_metric}{Eliminate metrics by raising or lowering indices.}\n\nEliminate metric and inverse metric objects by raising or lowering indices." |
| 10 | + "cell_id": 706940583944905291, |
| 11 | + "cell_origin": "client", |
| 12 | + "cell_type": "latex_view", |
| 13 | + "source": "\\algorithm{eliminate_metric}{Eliminate metrics by raising or lowering indices.}\n\nEliminate metric and inverse metric objects by raising or lowering indices." |
13 | 14 | } |
14 | 15 | ], |
15 | | - "hidden" : true, |
16 | | - "source" : "\\algorithm{eliminate_metric}{Eliminate metrics by raising or lowering indices.}\n\nEliminate metric and inverse metric objects by raising or lowering indices." |
| 16 | + "hidden": true, |
| 17 | + "source": "\\algorithm{eliminate_metric}{Eliminate metrics by raising or lowering indices.}\n\nEliminate metric and inverse metric objects by raising or lowering indices." |
17 | 18 | }, |
18 | 19 | { |
19 | | - "cell_origin" : "client", |
20 | | - "cell_type" : "input", |
21 | | - "cells" : |
22 | | - [ |
| 20 | + "cell_id": 9501239282791426272, |
| 21 | + "cell_origin": "client", |
| 22 | + "cell_type": "input", |
| 23 | + "cells": [ |
23 | 24 | { |
24 | | - "cell_origin" : "server", |
25 | | - "cell_type" : "latex_view", |
26 | | - "source" : "\\begin{dmath*}{}g_{m p} g^{p m}\\end{dmath*}" |
| 25 | + "cell_id": 13340122236411534882, |
| 26 | + "cell_origin": "server", |
| 27 | + "cell_type": "latex_view", |
| 28 | + "cells": [ |
| 29 | + { |
| 30 | + "cell_id": 11333410999712696013, |
| 31 | + "cell_origin": "server", |
| 32 | + "cell_type": "input_form", |
| 33 | + "source": "g_{m p} g^{p m}" |
| 34 | + } |
| 35 | + ], |
| 36 | + "source": "\\begin{dmath*}{}g_{m p} g^{p m}\\end{dmath*}" |
27 | 37 | }, |
28 | 38 | { |
29 | | - "cell_origin" : "server", |
30 | | - "cell_type" : "latex_view", |
31 | | - "source" : "\\begin{dmath*}{}g^{p}\\,_{p}\\end{dmath*}" |
| 39 | + "cell_id": 17894985963178002384, |
| 40 | + "cell_origin": "server", |
| 41 | + "cell_type": "latex_view", |
| 42 | + "cells": [ |
| 43 | + { |
| 44 | + "cell_id": 5593101152482251246, |
| 45 | + "cell_origin": "server", |
| 46 | + "cell_type": "input_form", |
| 47 | + "source": "g^{p}_{p}" |
| 48 | + } |
| 49 | + ], |
| 50 | + "source": "\\begin{dmath*}{}g^{p}\\,_{p}\\end{dmath*}" |
32 | 51 | } |
33 | 52 | ], |
34 | | - "source" : "{m, n, p, q, r}::Indices(vector, position=fixed).\n{m, n, p, q, r}::Integer(0..9).\ng_{m n}::Metric.\ng^{m n}::InverseMetric.\ng_{m}^{n}::KroneckerDelta.\ng^{m}_{n}::KroneckerDelta.\nex:=g_{m p} g^{p m};\neliminate_metric(_);" |
| 53 | + "source": "{m, n, p, q, r}::Indices(vector, position=fixed).\n{m, n, p, q, r}::Integer(0..9).\ng_{m n}::Metric.\ng^{m n}::InverseMetric.\ng_{m}^{n}::KroneckerDelta.\ng^{m}_{n}::KroneckerDelta.\nex:=g_{m p} g^{p m};\neliminate_metric(_);" |
35 | 54 | }, |
36 | 55 | { |
37 | | - "cell_origin" : "client", |
38 | | - "cell_type" : "input", |
39 | | - "cells" : |
40 | | - [ |
| 56 | + "cell_id": 7815987119515900884, |
| 57 | + "cell_origin": "client", |
| 58 | + "cell_type": "input", |
| 59 | + "cells": [ |
41 | 60 | { |
42 | | - "cell_origin" : "server", |
43 | | - "cell_type" : "latex_view", |
44 | | - "source" : "\\begin{dmath*}{}10\\end{dmath*}" |
| 61 | + "cell_id": 11832355180757837612, |
| 62 | + "cell_origin": "server", |
| 63 | + "cell_type": "latex_view", |
| 64 | + "cells": [ |
| 65 | + { |
| 66 | + "cell_id": 1419432383822709486, |
| 67 | + "cell_origin": "server", |
| 68 | + "cell_type": "input_form", |
| 69 | + "source": "10" |
| 70 | + } |
| 71 | + ], |
| 72 | + "source": "\\begin{dmath*}{}10\\end{dmath*}" |
45 | 73 | } |
46 | 74 | ], |
47 | | - "source" : "eliminate_kronecker(_);" |
| 75 | + "source": "eliminate_kronecker(_);" |
48 | 76 | }, |
49 | 77 | { |
50 | | - "cell_origin" : "client", |
51 | | - "cell_type" : "latex", |
52 | | - "cells" : |
53 | | - [ |
| 78 | + "cell_id": 11136087069753532813, |
| 79 | + "cell_origin": "client", |
| 80 | + "cell_type": "latex", |
| 81 | + "cells": [ |
54 | 82 | { |
55 | | - "cell_origin" : "client", |
56 | | - "cell_type" : "latex_view", |
57 | | - "source" : "Related algorithms are \\algo{eliminate_kronecker} and \\algo{eliminate_vielbein}." |
| 83 | + "cell_id": 10975080456446455892, |
| 84 | + "cell_origin": "client", |
| 85 | + "cell_type": "latex_view", |
| 86 | + "source": "Related algorithms are \\algo{eliminate_kronecker} and \\algo{eliminate_vielbein}." |
58 | 87 | } |
59 | 88 | ], |
60 | | - "hidden" : true, |
61 | | - "source" : "Related algorithms are \\algo{eliminate_kronecker} and \\algo{eliminate_vielbein}." |
| 89 | + "hidden": true, |
| 90 | + "source": "Related algorithms are \\algo{eliminate_kronecker} and \\algo{eliminate_vielbein}." |
62 | 91 | }, |
63 | 92 | { |
64 | | - "cell_origin" : "client", |
65 | | - "cell_type" : "input", |
66 | | - "source" : "" |
| 93 | + "cell_id": 668070063135773764, |
| 94 | + "cell_origin": "client", |
| 95 | + "cell_type": "latex", |
| 96 | + "cells": [ |
| 97 | + { |
| 98 | + "cell_id": 2955225009111573646, |
| 99 | + "cell_origin": "client", |
| 100 | + "cell_type": "latex_view", |
| 101 | + "source": "It is sometimes useful to eliminate only those metrics which have two\ndummy indices (so as to avoid changing indices on non-metric factors),\nas in the following example:" |
| 102 | + } |
| 103 | + ], |
| 104 | + "hidden": true, |
| 105 | + "source": "It is sometimes useful to eliminate only those metrics which have two\ndummy indices (so as to avoid changing indices on non-metric factors),\nas in the following example:" |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_id": 7674476649362588094, |
| 109 | + "cell_origin": "client", |
| 110 | + "cell_type": "input", |
| 111 | + "cells": [ |
| 112 | + { |
| 113 | + "cell_id": 2830738818925621002, |
| 114 | + "cell_origin": "server", |
| 115 | + "cell_type": "latex_view", |
| 116 | + "source": "\\begin{dmath*}{}\\text{Property Indices(position=fixed) attached to~}\\left[a,~\\discretionary{}{}{} b,~\\discretionary{}{}{} c,~\\discretionary{}{}{} d,~\\discretionary{}{}{} e,~\\discretionary{}{}{} f\\right].\\end{dmath*}" |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_id": 9384043968720976150, |
| 120 | + "cell_origin": "server", |
| 121 | + "cell_type": "latex_view", |
| 122 | + "source": "\\begin{dmath*}{}\\text{Property Metric attached to~}g_{a b}.\\end{dmath*}" |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_id": 3632907748806720927, |
| 126 | + "cell_origin": "server", |
| 127 | + "cell_type": "latex_view", |
| 128 | + "source": "\\begin{dmath*}{}\\text{Property TableauSymmetry attached to~}g^{a b}.\\end{dmath*}" |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_id": 14029841914135557336, |
| 132 | + "cell_origin": "server", |
| 133 | + "cell_type": "latex_view", |
| 134 | + "cells": [ |
| 135 | + { |
| 136 | + "cell_id": 16107652404209191630, |
| 137 | + "cell_origin": "server", |
| 138 | + "cell_type": "input_form", |
| 139 | + "source": "X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f}" |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": "\\begin{dmath*}{}X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f}\\end{dmath*}" |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_id": 11123767540161473056, |
| 146 | + "cell_origin": "server", |
| 147 | + "cell_type": "latex_view", |
| 148 | + "cells": [ |
| 149 | + { |
| 150 | + "cell_id": 10523281001881141507, |
| 151 | + "cell_origin": "server", |
| 152 | + "cell_type": "input_form", |
| 153 | + "source": "X_{e} g^{e f}" |
| 154 | + } |
| 155 | + ], |
| 156 | + "source": "\\begin{dmath*}{}X_{e} g^{e f}\\end{dmath*}" |
| 157 | + } |
| 158 | + ], |
| 159 | + "source": "{a,b,c,d,e,f}::Indices(position=fixed);\ng_{a b}::Metric;\ng^{a b}::InverseMetric;\nex:=X_{a} g^{a b} g_{b c} g^{c d} g_{d e} g^{e f};\neliminate_metric(ex, repeat=True, redundant=True);" |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_id": 10177437379030071371, |
| 163 | + "cell_origin": "client", |
| 164 | + "cell_type": "latex", |
| 165 | + "cells": [ |
| 166 | + { |
| 167 | + "cell_id": 1237014864296849726, |
| 168 | + "cell_origin": "client", |
| 169 | + "cell_type": "latex_view", |
| 170 | + "source": "Without the \\verb|redundant=True| option, this would have reduced the \nexpression to $X^{f}$." |
| 171 | + } |
| 172 | + ], |
| 173 | + "hidden": true, |
| 174 | + "source": "Without the \\verb|redundant=True| option, this would have reduced the \nexpression to $X^{f}$." |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_id": 8153574234349350675, |
| 178 | + "cell_origin": "client", |
| 179 | + "cell_type": "input", |
| 180 | + "source": "" |
67 | 181 | } |
68 | 182 | ], |
69 | | - "description" : "Cadabra JSON notebook format", |
70 | | - "version" : 1 |
| 183 | + "description": "Cadabra JSON notebook format", |
| 184 | + "version": 1.0 |
71 | 185 | } |
0 commit comments