|
| 1 | +{ |
| 2 | + "cell_id" : 10246630462622169684, |
| 3 | + "cells" : |
| 4 | + [ |
| 5 | + { |
| 6 | + "cell_id" : 3324461703110413508, |
| 7 | + "cell_origin" : "client", |
| 8 | + "cell_type" : "latex", |
| 9 | + "cells" : |
| 10 | + [ |
| 11 | + { |
| 12 | + "cell_id" : 14419213666533296135, |
| 13 | + "cell_origin" : "client", |
| 14 | + "cell_type" : "latex_view", |
| 15 | + "source" : "\\package{cdb.relativity.abstract}{Core general relativity package, mainly a library of various standard expressions.}\n\nImporting this library will make \\verb|\\partial| a partial derivative and will also declare the\ngreek indices to be space-time indices." |
| 16 | + } |
| 17 | + ], |
| 18 | + "hidden" : true, |
| 19 | + "source" : "\\package{cdb.relativity.abstract}{Core general relativity package, mainly a library of various standard expressions.}\n\nImporting this library will make \\verb|\\partial| a partial derivative and will also declare the\ngreek indices to be space-time indices." |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_id" : 12613540530229412949, |
| 23 | + "cell_origin" : "client", |
| 24 | + "cell_type" : "input", |
| 25 | + "cells" : |
| 26 | + [ |
| 27 | + { |
| 28 | + "cell_id" : 9223372036854775835, |
| 29 | + "cell_origin" : "server", |
| 30 | + "cell_type" : "latex_view", |
| 31 | + "source" : "\\begin{dmath*}{}\\text{Attached property PartialDerivative to~}\\partial{\\#}.\\end{dmath*}" |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_id" : 9223372036854775836, |
| 35 | + "cell_origin" : "server", |
| 36 | + "cell_type" : "latex_view", |
| 37 | + "source" : "\\begin{dmath*}{}\\text{Attached property Indices(position=fixed) to~}\\left[\\mu,~\\discretionary{}{}{} \\nu,~\\discretionary{}{}{} \\rho,~\\discretionary{}{}{} \\sigma,~\\discretionary{}{}{} \\kappa,~\\discretionary{}{}{} \\gamma,~\\discretionary{}{}{} \\lambda\\right].\\end{dmath*}" |
| 38 | + } |
| 39 | + ], |
| 40 | + "source" : "\\partial{#}::PartialDerivative;\n{\\mu,\\nu,\\rho,\\sigma,\\kappa,\\gamma,\\lambda}::Indices(spacetime, position=fixed);" |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_id" : 11955494087904535027, |
| 44 | + "cell_origin" : "client", |
| 45 | + "cell_type" : "latex", |
| 46 | + "cells" : |
| 47 | + [ |
| 48 | + { |
| 49 | + "cell_id" : 15119378517043388215, |
| 50 | + "cell_origin" : "client", |
| 51 | + "cell_type" : "latex_view", |
| 52 | + "source" : "\\algorithm{riemann_from_christoffel(R: Ex, c: Ex) -> Ex}{Generates an equality which determines the Riemann tensor in terms of the Christoffel symbols.}" |
| 53 | + } |
| 54 | + ], |
| 55 | + "hidden" : true, |
| 56 | + "source" : "\\algorithm{riemann_from_christoffel(R: Ex, c: Ex) -> Ex}{Generates an equality which determines the Riemann tensor in terms of the Christoffel symbols.}" |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_id" : 14094191732391016476, |
| 60 | + "cell_origin" : "client", |
| 61 | + "cell_type" : "input", |
| 62 | + "source" : "def riemann_from_christoffel(R=$R$, c=$\\Gamma$):\n ex:= @(R)^{\\rho}_{\\sigma\\mu\\nu} = \\partial_{\\mu}{@(c)^{\\rho}_{\\nu\\sigma}} \n -\\partial_{\\nu}{@(c)^{\\rho}_{\\mu\\sigma}} \n + @(c)^{\\rho}_{\\mu\\lambda} @(c)^{\\lambda}_{\\nu\\sigma} \n - @(c)^{\\rho}_{\\nu\\lambda} @(c)^{\\lambda}_{\\mu\\sigma}:\n return ex" |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_id" : 17711059759552177114, |
| 66 | + "cell_origin" : "client", |
| 67 | + "cell_type" : "latex", |
| 68 | + "cells" : |
| 69 | + [ |
| 70 | + { |
| 71 | + "cell_id" : 2943028165866679465, |
| 72 | + "cell_origin" : "client", |
| 73 | + "cell_type" : "latex_view", |
| 74 | + "source" : "\\algorithm{christoffel_from_metric(c: Ex, g: Ex) -> Ex}{Generates an equality which determines the Christoffel symbols in terms of the metric.}" |
| 75 | + } |
| 76 | + ], |
| 77 | + "hidden" : true, |
| 78 | + "source" : "\\algorithm{christoffel_from_metric(c: Ex, g: Ex) -> Ex}{Generates an equality which determines the Christoffel symbols in terms of the metric.}" |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_id" : 16328687583199300518, |
| 82 | + "cell_origin" : "client", |
| 83 | + "cell_type" : "input", |
| 84 | + "source" : "def christoffel_from_metric(c=$\\Gamma$, g=$g$):\n ex:= @(c)^{\\lambda}_{\\mu\\nu} = 1/2 g^{\\lambda\\kappa} ( \\partial_{\\mu}{ g_{\\kappa\\nu} }\n + \\partial_{\\nu}{ g_{\\kappa\\mu} } - \\partial_{\\kappa}{ g_{\\mu\\nu} } ).\n return ex\n" |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_id" : 17531443358799556997, |
| 88 | + "cell_origin" : "client", |
| 89 | + "cell_type" : "latex", |
| 90 | + "cells" : |
| 91 | + [ |
| 92 | + { |
| 93 | + "cell_id" : 16528097175233509746, |
| 94 | + "cell_origin" : "client", |
| 95 | + "cell_type" : "latex_view", |
| 96 | + "source" : "\\algorithm{riemann_to_ricci}{Convert contractions of Riemann tensors to Ricci tensors or scalars.}" |
| 97 | + } |
| 98 | + ], |
| 99 | + "hidden" : true, |
| 100 | + "source" : "\\algorithm{riemann_to_ricci}{Convert contractions of Riemann tensors to Ricci tensors or scalars.}" |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_id" : 6890929525873944922, |
| 104 | + "cell_origin" : "client", |
| 105 | + "cell_type" : "input", |
| 106 | + "source" : "def riemann_to_ricci(ex, R=$R$):\n rl1:= @(R)^{a?}_{b? a? c?} = @(R)_{b? c?}, @(R)^{a?}_{b? c? a?} = -@(R)_{b? c?}.\n rl2:= @(R)_{a?}_{b?}^{a?}_{c?} = @(R)_{b? c?}, @(R)_{a?}_{b? c?}^{a?} = -@(R)_{b? c?}.\n rl3:= @(R)_{b?}^{a?}_{c? a?} = @(R)_{b? c?}, @(R)_{b?}^{a?}_{a? c?} = -@(R)_{b? c?}.\n rl4:= @(R)_{b?}_{a?}^{c? a?} = @(R)_{b?}^{c?}.\n rl5:= @(R)^{a?}_{a?} = @(R), @(R)_{a?}^{a?} = @(R).\n rl6:= @(R)^{a?}_{a? b? c?} = R_{\n\n substitute(ex, rl1+rl2+rl3+rl4+rl5, repeat=True)\n return ex" |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_id" : 3773496488914727547, |
| 110 | + "cell_origin" : "client", |
| 111 | + "cell_type" : "input", |
| 112 | + "cells" : |
| 113 | + [ |
| 114 | + { |
| 115 | + "cell_id" : 9223372036854775849, |
| 116 | + "cell_origin" : "server", |
| 117 | + "cell_type" : "latex_view", |
| 118 | + "cells" : |
| 119 | + [ |
| 120 | + { |
| 121 | + "cell_id" : 9223372036854775850, |
| 122 | + "cell_origin" : "server", |
| 123 | + "cell_type" : "input_form", |
| 124 | + "source" : "R^{a}_{b c a}-R^{a}_{b a c}" |
| 125 | + } |
| 126 | + ], |
| 127 | + "source" : "\\begin{dmath*}{}R^{a}\\,_{b c a}-R^{a}\\,_{b a c}\\end{dmath*}" |
| 128 | + } |
| 129 | + ], |
| 130 | + "source" : "ex:= R^{a}_{b c a} - R^{a}_{b a c};" |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_id" : 2143829647108705411, |
| 134 | + "cell_origin" : "client", |
| 135 | + "cell_type" : "input", |
| 136 | + "cells" : |
| 137 | + [ |
| 138 | + { |
| 139 | + "cell_id" : 9223372036854775852, |
| 140 | + "cell_origin" : "server", |
| 141 | + "cell_type" : "latex_view", |
| 142 | + "cells" : |
| 143 | + [ |
| 144 | + { |
| 145 | + "cell_id" : 9223372036854775853, |
| 146 | + "cell_origin" : "server", |
| 147 | + "cell_type" : "input_form", |
| 148 | + "source" : "-2R_{b c}" |
| 149 | + } |
| 150 | + ], |
| 151 | + "source" : "\\begin{dmath*}{}-2R_{b c}\\end{dmath*}" |
| 152 | + } |
| 153 | + ], |
| 154 | + "source" : "riemann_to_ricci(ex);" |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_id" : 8133262252432645091, |
| 158 | + "cell_origin" : "client", |
| 159 | + "cell_type" : "input", |
| 160 | + "source" : "" |
| 161 | + } |
| 162 | + ], |
| 163 | + "description" : "Cadabra JSON notebook format", |
| 164 | + "version" : 1 |
| 165 | +} |
0 commit comments