|
80 | 80 | "source": "\\begin{dmath*}{}-\\sin{y} \\cos{x}\\end{dmath*}" |
81 | 81 | } |
82 | 82 | ], |
| 83 | + "ignore_on_import": true, |
83 | 84 | "source": "diff($\\sin(x)\\cos(y)$, $x$, $y$);" |
84 | 85 | }, |
85 | 86 | { |
|
176 | 177 | "source": "\\begin{dmath*}{}\\frac{1}{3}{x}^{3} y\\end{dmath*}" |
177 | 178 | } |
178 | 179 | ], |
| 180 | + "ignore_on_import": true, |
179 | 181 | "source": "integrate($x**2$, $x$, $y$);" |
180 | 182 | }, |
181 | 183 | { |
|
213 | 215 | "source": "\\begin{dmath*}{}\\frac{1}{4}{y}^{2}\\end{dmath*}" |
214 | 216 | } |
215 | 217 | ], |
| 218 | + "ignore_on_import": true, |
216 | 219 | "source": "integrate($x y$, ($x$, 0, 1), $y$);" |
217 | 220 | }, |
| 221 | + { |
| 222 | + "cell_id": 15496749977354253222, |
| 223 | + "cell_origin": "client", |
| 224 | + "cell_type": "latex", |
| 225 | + "cells": [ |
| 226 | + { |
| 227 | + "cell_id": 11565454487843639642, |
| 228 | + "cell_origin": "client", |
| 229 | + "cell_type": "latex_view", |
| 230 | + "source": "\\algorithm{limit}{Take the limit of an expression.}\n\nThis function mimics the SymPy \\verb|limit| function, except that all\nmathematical expressions need to be Cadabra expressions." |
| 231 | + } |
| 232 | + ], |
| 233 | + "source": "\\algorithm{limit}{Take the limit of an expression.}\n\nThis function mimics the SymPy \\verb|limit| function, except that all\nmathematical expressions need to be Cadabra expressions." |
| 234 | + }, |
218 | 235 | { |
219 | 236 | "cell_id": 14261374590043911759, |
220 | 237 | "cell_origin": "client", |
221 | 238 | "cell_type": "input", |
| 239 | + "source": "def limit(ex, v, loc, *args):\n ret = $@(ex)$\n sbex = SympyBridge(ret)\n sbvar = SympyBridge(v).to_sympy()\n sbloc = SympyBridge(loc).to_sympy() if isinstance(loc, Ex) else loc\n sbex.from_sympy( str(sympy.limit( sbex.to_sympy(), sbvar, sbloc ) ) )\n return ret" |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_id": 15671206733202710229, |
| 243 | + "cell_origin": "client", |
| 244 | + "cell_type": "input", |
| 245 | + "cells": [ |
| 246 | + { |
| 247 | + "cell_id": 8723327984628819396, |
| 248 | + "cell_origin": "server", |
| 249 | + "cell_type": "latex_view", |
| 250 | + "cells": [ |
| 251 | + { |
| 252 | + "cell_id": 3839762579849277582, |
| 253 | + "cell_origin": "server", |
| 254 | + "cell_type": "input_form", |
| 255 | + "source": "1" |
| 256 | + } |
| 257 | + ], |
| 258 | + "source": "\\begin{dmath*}{}1\\end{dmath*}" |
| 259 | + } |
| 260 | + ], |
| 261 | + "ignore_on_import": true, |
| 262 | + "source": "limit($\\sin(x)/x$, $x$, 0);" |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_id": 4403018984250840411, |
| 266 | + "cell_origin": "client", |
| 267 | + "cell_type": "latex", |
| 268 | + "cells": [ |
| 269 | + { |
| 270 | + "cell_id": 11512538112824887976, |
| 271 | + "cell_origin": "client", |
| 272 | + "cell_type": "latex_view", |
| 273 | + "source": "\\algorithm{series}{Construct a Taylor series.}\n\nThis function mimics the SymPy \\verb|series| function, except that all\nmathematical expressions need to be Cadabra expressions." |
| 274 | + } |
| 275 | + ], |
| 276 | + "hidden": true, |
| 277 | + "source": "\\algorithm{series}{Construct a Taylor series.}\n\nThis function mimics the SymPy \\verb|series| function, except that all\nmathematical expressions need to be Cadabra expressions." |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_id": 1152336426546868041, |
| 281 | + "cell_origin": "client", |
| 282 | + "cell_type": "input", |
| 283 | + "source": "def series(ex, v, loc, order_, *args):\n ret = $@(ex)$\n sbex = SympyBridge(ret)\n sbvar = SympyBridge(v).to_sympy()\n sbloc = SympyBridge(loc).to_sympy() if isinstance(loc, Ex) else loc\n tmp = str(sympy.series( sbex.to_sympy(), sbvar, sbloc, order_ ) )\n tmp = tmp.replace(\"O(\", r\"\\bigO(\")\n sbex.from_sympy( tmp )\n return ret" |
| 284 | + }, |
| 285 | + { |
| 286 | + "cell_id": 796023660136979964, |
| 287 | + "cell_origin": "client", |
| 288 | + "cell_type": "input", |
| 289 | + "cells": [ |
| 290 | + { |
| 291 | + "cell_id": 3415134206898553614, |
| 292 | + "cell_origin": "server", |
| 293 | + "cell_type": "latex_view", |
| 294 | + "cells": [ |
| 295 | + { |
| 296 | + "cell_id": 17449491732516654073, |
| 297 | + "cell_origin": "server", |
| 298 | + "cell_type": "input_form", |
| 299 | + "source": "1 - 1/6 (x)**2 + \\bigO((x)**4)" |
| 300 | + } |
| 301 | + ], |
| 302 | + "source": "\\begin{dmath*}{}1 - \\frac{1}{6}{x}^{2}+\\bigO\\left({x}^{4}\\right)\\end{dmath*}" |
| 303 | + } |
| 304 | + ], |
| 305 | + "ignore_on_import": true, |
| 306 | + "source": "q=series($\\sin(x)/x$, $x$, 0, 4);" |
| 307 | + }, |
| 308 | + { |
| 309 | + "cell_id": 12877610158835516880, |
| 310 | + "cell_origin": "client", |
| 311 | + "cell_type": "input", |
| 312 | + "cells": [ |
| 313 | + { |
| 314 | + "cell_id": 16889301844141721001, |
| 315 | + "cell_origin": "server", |
| 316 | + "cell_type": "latex_view", |
| 317 | + "cells": [ |
| 318 | + { |
| 319 | + "cell_id": 15333461881261583200, |
| 320 | + "cell_origin": "server", |
| 321 | + "cell_type": "input_form", |
| 322 | + "source": "1 - 1/6 (x)**2" |
| 323 | + } |
| 324 | + ], |
| 325 | + "source": "\\begin{dmath*}{}1 - \\frac{1}{6}{x}^{2}\\end{dmath*}" |
| 326 | + } |
| 327 | + ], |
| 328 | + "ignore_on_import": true, |
| 329 | + "source": "substitute(q, $\\bigO(A??) ->0$);" |
| 330 | + }, |
| 331 | + { |
| 332 | + "cell_id": 6061726248509003999, |
| 333 | + "cell_origin": "client", |
| 334 | + "cell_type": "input", |
| 335 | + "cells": [ |
| 336 | + { |
| 337 | + "cell_id": 8301222040948595643, |
| 338 | + "cell_origin": "server", |
| 339 | + "cell_type": "latex_view", |
| 340 | + "cells": [ |
| 341 | + { |
| 342 | + "cell_id": 6578198996268257631, |
| 343 | + "cell_origin": "server", |
| 344 | + "cell_type": "input_form", |
| 345 | + "source": " 1/2 \\sqrt(2)-\\sqrt(2) ( 1/2 x - 1/8 \\pi) + \\bigO((x - 1/4 \\pi)**2 , {x, 1/4 \\pi})" |
| 346 | + } |
| 347 | + ], |
| 348 | + "source": "\\begin{dmath*}{}\\frac{1}{2}\\sqrt{2}-\\sqrt{2} \\left(\\frac{1}{2}x - \\frac{1}{8}\\pi\\right)+\\bigO\\left({\\left(x - \\frac{1}{4}\\pi\\right)}^{2} , \\discretionary{}{}{}\\left[x,~\\discretionary{}{}{} \\frac{1}{4}\\pi\\right]\\right)\\end{dmath*}" |
| 349 | + } |
| 350 | + ], |
| 351 | + "ignore_on_import": true, |
| 352 | + "source": "series($\\cos(x)$, $x$, $\\pi/4$, 2);" |
| 353 | + }, |
| 354 | + { |
| 355 | + "cell_id": 16349293761953373413, |
| 356 | + "cell_origin": "client", |
| 357 | + "cell_type": "input", |
222 | 358 | "source": "" |
223 | 359 | } |
224 | 360 | ], |
|
0 commit comments