|
7 | 7 | "cell_type": "latex", |
8 | 8 | "cells": [ |
9 | 9 | { |
10 | | - "cell_id": 5114489047998022221, |
| 10 | + "cell_id": 7825517350706958358, |
11 | 11 | "cell_origin": "client", |
12 | 12 | "cell_type": "latex_view", |
13 | | - "source": "\\package{cdb.sympy.calculus}{Glue to use SymPy calculus functionality on Cadabra expressions.}\n\nA lot of functionality in SymPy can be used on Cadabra expressions, but in order to correctly\nconvert from and to the SymPy expression form, we need a bridge. This package contains such\nbridging fuctions, which will ensure that e.g. tensor indices are handled correctly when\nfed through SymPy's scalar algebra algorithms.\n\n\\algorithm{diff}{Differentiate an expression with respect to a variable.}" |
| 13 | + "source": "\\package{cdb.sympy.calculus}{Use SymPy calculus functionality on Cadabra expressions.}\n\nA lot of functionality in SymPy can be used on Cadabra expressions, but in order to correctly\nconvert from and to the SymPy expression form, we need a bridge. This package contains such\nbridging fuctions, which will ensure that e.g. tensor indices are handled correctly when\nfed through SymPy's scalar algebra algorithms.\n\n\\algorithm{diff}{Differentiate an expression with respect to a variable.}" |
14 | 14 | } |
15 | 15 | ], |
16 | 16 | "hidden": true, |
17 | | - "source": "\\package{cdb.sympy.calculus}{Glue to use SymPy calculus functionality on Cadabra expressions.}\n\nA lot of functionality in SymPy can be used on Cadabra expressions, but in order to correctly\nconvert from and to the SymPy expression form, we need a bridge. This package contains such\nbridging fuctions, which will ensure that e.g. tensor indices are handled correctly when\nfed through SymPy's scalar algebra algorithms.\n\n\\algorithm{diff}{Differentiate an expression with respect to a variable.}" |
| 17 | + "source": "\\package{cdb.sympy.calculus}{Use SymPy calculus functionality on Cadabra expressions.}\n\nA lot of functionality in SymPy can be used on Cadabra expressions, but in order to correctly\nconvert from and to the SymPy expression form, we need a bridge. This package contains such\nbridging fuctions, which will ensure that e.g. tensor indices are handled correctly when\nfed through SymPy's scalar algebra algorithms.\n\n\\algorithm{diff}{Differentiate an expression with respect to a variable.}" |
18 | 18 | }, |
19 | 19 | { |
20 | 20 | "cell_id": 3804610120254550473, |
21 | 21 | "cell_origin": "client", |
22 | 22 | "cell_type": "input", |
23 | 23 | "source": "def diff(ex1, ex2):\n ret = $@(ex1)$\n sb = SympyBridge(ret)\n sb.from_sympy( str(sympy.diff( sb.to_sympy(), ex2 ) ) )\n return ret" |
24 | 24 | }, |
| 25 | + { |
| 26 | + "cell_id": 12308609622224851480, |
| 27 | + "cell_origin": "client", |
| 28 | + "cell_type": "latex", |
| 29 | + "cells": [ |
| 30 | + { |
| 31 | + "cell_id": 13996360633394007671, |
| 32 | + "cell_origin": "client", |
| 33 | + "cell_type": "latex_view", |
| 34 | + "source": "A typical example, differentiating with respect to a single variable:" |
| 35 | + } |
| 36 | + ], |
| 37 | + "hidden": true, |
| 38 | + "source": "A typical example, differentiating with respect to a single variable:" |
| 39 | + }, |
25 | 40 | { |
26 | 41 | "cell_id": 1389897799554975903, |
27 | 42 | "cell_origin": "client", |
|
59 | 74 | "ignore_on_import": true, |
60 | 75 | "source": "ex:=\\sin(x) A_{\\mu}(x);\ndiff(ex, $x$);" |
61 | 76 | }, |
| 77 | + { |
| 78 | + "cell_id": 6234003092100779795, |
| 79 | + "cell_origin": "client", |
| 80 | + "cell_type": "latex", |
| 81 | + "cells": [ |
| 82 | + { |
| 83 | + "cell_id": 10150353556520051186, |
| 84 | + "cell_origin": "client", |
| 85 | + "cell_type": "latex_view", |
| 86 | + "source": "\\algorithm{integrate}{Integrate a definite or indefinite integral.}\n\nThis function mimics the SymPy \\verb|integrate| function, except that all\nmathematical expressions need to be Cadabra expressions. Indefinite integration\nis done by passing an argument which is just an expression, while definite\nintegration is done by passing a tuple consisting of the integration variable,\nthe starting point and the end point." |
| 87 | + } |
| 88 | + ], |
| 89 | + "hidden": true, |
| 90 | + "source": "\\algorithm{integrate}{Integrate a definite or indefinite integral.}\n\nThis function mimics the SymPy \\verb|integrate| function, except that all\nmathematical expressions need to be Cadabra expressions. Indefinite integration\nis done by passing an argument which is just an expression, while definite\nintegration is done by passing a tuple consisting of the integration variable,\nthe starting point and the end point." |
| 91 | + }, |
62 | 92 | { |
63 | 93 | "cell_id": 15467993639628642890, |
64 | 94 | "cell_origin": "client", |
65 | 95 | "cell_type": "input", |
| 96 | + "source": "def integrate(ex1, *args):\n ret = $@(ex1)$\n sb = SympyBridge(ret)\n iranges = []\n for arg in args:\n if isinstance(arg, tuple):\n # print(arg)\n sbtmp = SympyBridge(arg[0])\n tpl = (sbtmp.to_sympy(), arg[1], arg[2])\n iranges.append(tpl)\n # print(iranges)\n sb.from_sympy( str(sympy.integrate( sb.to_sympy(), *iranges) ) )\n else:\n sbtmp = SympyBridge(arg)\n sb.from_sympy( str(sympy.integrate( sb.to_sympy(), sbtmp.to_sympy() ) ))\n return ret" |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_id": 3801120048138997797, |
| 100 | + "cell_origin": "client", |
| 101 | + "cell_type": "latex", |
| 102 | + "cells": [ |
| 103 | + { |
| 104 | + "cell_id": 13060402605556641930, |
| 105 | + "cell_origin": "client", |
| 106 | + "cell_type": "latex_view", |
| 107 | + "source": "The following is an example of a definite integration:" |
| 108 | + } |
| 109 | + ], |
| 110 | + "hidden": true, |
| 111 | + "source": "The following is an example of a definite integration:" |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_id": 14525293143474443676, |
| 115 | + "cell_origin": "client", |
| 116 | + "cell_type": "input", |
| 117 | + "cells": [ |
| 118 | + { |
| 119 | + "cell_id": 12012117006062441490, |
| 120 | + "cell_origin": "server", |
| 121 | + "cell_type": "latex_view", |
| 122 | + "cells": [ |
| 123 | + { |
| 124 | + "cell_id": 316157390348515815, |
| 125 | + "cell_origin": "server", |
| 126 | + "cell_type": "input_form", |
| 127 | + "source": " 27/2 " |
| 128 | + } |
| 129 | + ], |
| 130 | + "source": "\\begin{dmath*}{}\\frac{27}{2}\\end{dmath*}" |
| 131 | + } |
| 132 | + ], |
| 133 | + "ignore_on_import": true, |
| 134 | + "source": "integrate($x**2 y$, ($x$, 0, 3), ($y$, 0, 1) );" |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_id": 2354178610469859185, |
| 138 | + "cell_origin": "client", |
| 139 | + "cell_type": "latex", |
| 140 | + "cells": [ |
| 141 | + { |
| 142 | + "cell_id": 17727729829154494875, |
| 143 | + "cell_origin": "client", |
| 144 | + "cell_type": "latex_view", |
| 145 | + "source": "Here is an indefinite integration:" |
| 146 | + } |
| 147 | + ], |
| 148 | + "hidden": true, |
| 149 | + "source": "Here is an indefinite integration:" |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_id": 2273072162227922772, |
| 153 | + "cell_origin": "client", |
| 154 | + "cell_type": "input", |
| 155 | + "cells": [ |
| 156 | + { |
| 157 | + "cell_id": 15728598564050855914, |
| 158 | + "cell_origin": "server", |
| 159 | + "cell_type": "latex_view", |
| 160 | + "cells": [ |
| 161 | + { |
| 162 | + "cell_id": 13682162971051715272, |
| 163 | + "cell_origin": "server", |
| 164 | + "cell_type": "input_form", |
| 165 | + "source": " 1/3 (x)**3 y" |
| 166 | + } |
| 167 | + ], |
| 168 | + "source": "\\begin{dmath*}{}\\frac{1}{3}{x}^{3} y\\end{dmath*}" |
| 169 | + } |
| 170 | + ], |
| 171 | + "source": "integrate($x**2$, $x$, $y$);" |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_id": 14437617558705092816, |
| 175 | + "cell_origin": "client", |
| 176 | + "cell_type": "latex", |
| 177 | + "cells": [ |
| 178 | + { |
| 179 | + "cell_id": 9935958107203452733, |
| 180 | + "cell_origin": "client", |
| 181 | + "cell_type": "latex_view", |
| 182 | + "source": "Mixed versions are also possible:" |
| 183 | + } |
| 184 | + ], |
| 185 | + "hidden": true, |
| 186 | + "source": "Mixed versions are also possible:" |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_id": 6556436360376410122, |
| 190 | + "cell_origin": "client", |
| 191 | + "cell_type": "input", |
| 192 | + "cells": [ |
| 193 | + { |
| 194 | + "cell_id": 4095815210246821736, |
| 195 | + "cell_origin": "server", |
| 196 | + "cell_type": "latex_view", |
| 197 | + "cells": [ |
| 198 | + { |
| 199 | + "cell_id": 13733098240311066994, |
| 200 | + "cell_origin": "server", |
| 201 | + "cell_type": "input_form", |
| 202 | + "source": " 1/4 (y)**2" |
| 203 | + } |
| 204 | + ], |
| 205 | + "source": "\\begin{dmath*}{}\\frac{1}{4}{y}^{2}\\end{dmath*}" |
| 206 | + } |
| 207 | + ], |
| 208 | + "source": "integrate($x y$, ($x$, 0, 1), $y$);" |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_id": 14261374590043911759, |
| 212 | + "cell_origin": "client", |
| 213 | + "cell_type": "input", |
66 | 214 | "source": "" |
67 | 215 | } |
68 | 216 | ], |
|
0 commit comments