|
434 | 434 | { |
435 | 435 | "cell_origin" : "client", |
436 | 436 | "cell_type" : "input", |
437 | | - "source" : "def expand_nabla(ex):\n for nabla in ex[r'\\nabla']:\n nabla.name=r'\\partial'\n dindex = nabla.indices().__next__() \n for arg in nabla.args(): \n ret:=0;\n for index in arg.free_indices():\n t2:= @(arg);\n if index.parent_rel==sub:\n t1:= -\\Gamma^{p}_{@(dindex) @(index)};\n t2[index]:= _{p};\n else:\n t1:= \\Gamma^{@(index)}_{@(dindex) p};\n t2[index]:= ^{p};\n ret += t1 * t2\n nabla += ret\n return ex" |
| 437 | + "source" : "def expand_nabla(ex):\n for nabla in ex[r'\\nabla']:\n nabla.name=r'\\partial'\n dindex = nabla.indices().__next__() \n for arg in nabla.args(): \n ret:=0;\n for index in arg.free_indices():\n t2:= @(arg);\n if index.parent_rel==sub:\n t1:= -\\Gamma^{p}_{@(dindex) @(index)};\n t2[index]:= _{p};\n else:\n t1:= \\Gamma^{@(index)}_{@(dindex) p};\n t2[index]:= ^{p};\n ret += Ex(str(nabla.multiplier)) * t1 * t2\n nabla += ret\n return ex" |
438 | 438 | }, |
439 | 439 | { |
440 | 440 | "cell_origin" : "client", |
|
468 | 468 | { |
469 | 469 | "cell_origin" : "server", |
470 | 470 | "cell_type" : "input_form", |
471 | | - "source" : "\\nabla_{a}(h^{b}_{c})" |
| 471 | + "source" : " 1/2 \\nabla_{a}(h^{b}_{c})" |
472 | 472 | } |
473 | 473 | ], |
474 | | - "source" : "\\begin{dmath*}{}\\nabla_{a}{h^{b}\\,_{c}}\\end{dmath*}" |
| 474 | + "source" : "\\begin{dmath*}{}\\frac{1}{2}\\nabla_{a}{h^{b}\\,_{c}}\\end{dmath*}" |
475 | 475 | }, |
476 | 476 | { |
477 | 477 | "cell_origin" : "server", |
|
481 | 481 | { |
482 | 482 | "cell_origin" : "server", |
483 | 483 | "cell_type" : "input_form", |
484 | | - "source" : "\\partial_{a}(h^{b}_{c}) + \\Gamma^{b}_{a p} h^{p}_{c}-\\Gamma^{p}_{a c} h^{b}_{p}" |
| 484 | + "source" : " 1/2 \\partial_{a}(h^{b}_{c}) + 1/2 \\Gamma^{b}_{a p} h^{p}_{c} - 1/2 \\Gamma^{p}_{a c} h^{b}_{p}" |
485 | 485 | } |
486 | 486 | ], |
487 | | - "source" : "\\begin{dmath*}{}\\partial_{a}\\left(h^{b}\\,_{c}\\right)+\\Gamma^{b}\\,_{a p} h^{p}\\,_{c}-\\Gamma^{p}\\,_{a c} h^{b}\\,_{p}\\end{dmath*}" |
| 487 | + "source" : "\\begin{dmath*}{}\\frac{1}{2}\\partial_{a}\\left(h^{b}\\,_{c}\\right)+\\frac{1}{2}\\Gamma^{b}\\,_{a p} h^{p}\\,_{c} - \\frac{1}{2}\\Gamma^{p}\\,_{a c} h^{b}\\,_{p}\\end{dmath*}" |
488 | 488 | } |
489 | 489 | ], |
490 | | - "source" : "\\nabla{#}::Derivative;\nex:= \\nabla_{a}{ h^{b}_{c} }; \nexpand_nabla(ex);" |
| 490 | + "source" : "\\nabla{#}::Derivative;\nex:= 1/2 \\nabla_{a}{ h^{b}_{c} }; \nexpand_nabla(ex);" |
491 | 491 | }, |
492 | 492 | { |
493 | 493 | "cell_origin" : "client", |
|
502 | 502 | { |
503 | 503 | "cell_origin" : "server", |
504 | 504 | "cell_type" : "input_form", |
505 | | - "source" : "\\nabla_{a}(v_{b} w^{b})" |
| 505 | + "source" : " 1/4 \\nabla_{a}(v_{b} w^{b})" |
506 | 506 | } |
507 | 507 | ], |
508 | | - "source" : "\\begin{dmath*}{}\\nabla_{a}\\left(v_{b} w^{b}\\right)\\end{dmath*}" |
| 508 | + "source" : "\\begin{dmath*}{}\\frac{1}{4}\\nabla_{a}\\left(v_{b} w^{b}\\right)\\end{dmath*}" |
509 | 509 | }, |
510 | 510 | { |
511 | 511 | "cell_origin" : "server", |
|
515 | 515 | { |
516 | 516 | "cell_origin" : "server", |
517 | 517 | "cell_type" : "input_form", |
518 | | - "source" : "\\partial_{a}(v_{b} w^{b})" |
| 518 | + "source" : " 1/4 \\partial_{a}(v_{b} w^{b})" |
519 | 519 | } |
520 | 520 | ], |
521 | | - "source" : "\\begin{dmath*}{}\\partial_{a}\\left(v_{b} w^{b}\\right)\\end{dmath*}" |
| 521 | + "source" : "\\begin{dmath*}{}\\frac{1}{4}\\partial_{a}\\left(v_{b} w^{b}\\right)\\end{dmath*}" |
522 | 522 | } |
523 | 523 | ], |
524 | | - "source" : "ex:= \\nabla_{a}{ v_{b} w^{b} };\nexpand_nabla(ex);" |
| 524 | + "source" : "ex:= 1/4 \\nabla_{a}{ v_{b} w^{b} };\nexpand_nabla(ex);" |
525 | 525 | }, |
526 | 526 | { |
527 | 527 | "cell_origin" : "client", |
|
0 commit comments