|
| 1 | +import asyncio |
| 2 | +import logging |
| 3 | +from logging import basicConfig |
| 4 | + |
| 5 | +import typer |
| 6 | +from dotenv import load_dotenv |
| 7 | +from langchain_mcp_adapters.client import MultiServerMCPClient |
| 8 | +from langgraph.graph import START, MessagesState, StateGraph |
| 9 | +from langgraph.prebuilt import ToolNode, tools_condition |
| 10 | + |
| 11 | +from template_langgraph.llms.azure_openais import AzureOpenAiWrapper |
| 12 | +from template_langgraph.loggers import get_logger |
| 13 | + |
| 14 | +# Initialize the Typer application |
| 15 | +app = typer.Typer( |
| 16 | + add_completion=False, |
| 17 | + help="MCP operator CLI", |
| 18 | +) |
| 19 | + |
| 20 | +# Set up logging |
| 21 | +logger = get_logger(__name__) |
| 22 | + |
| 23 | + |
| 24 | +def set_verbose_logging(verbose: bool): |
| 25 | + if verbose: |
| 26 | + logger.setLevel(logging.DEBUG) |
| 27 | + basicConfig(level=logging.DEBUG) |
| 28 | + logging.basicConfig(level=logging.DEBUG) |
| 29 | + |
| 30 | + |
| 31 | +async def run_agent(query: str) -> dict: |
| 32 | + client = MultiServerMCPClient( |
| 33 | + { |
| 34 | + "math": { |
| 35 | + "command": "python", |
| 36 | + # Make sure to update to the full absolute path to your math_server.py file |
| 37 | + "args": ["./template_langgraph/mcps/math_server.py"], |
| 38 | + "transport": "stdio", |
| 39 | + }, |
| 40 | + } |
| 41 | + ) |
| 42 | + tools = await client.get_tools() |
| 43 | + llm = AzureOpenAiWrapper().chat_model |
| 44 | + |
| 45 | + def call_model(state: MessagesState): |
| 46 | + response = llm.bind_tools(tools).invoke(state["messages"]) |
| 47 | + return {"messages": response} |
| 48 | + |
| 49 | + builder = StateGraph(MessagesState) |
| 50 | + builder.add_node(call_model) |
| 51 | + builder.add_node(ToolNode(tools)) |
| 52 | + builder.add_edge(START, "call_model") |
| 53 | + builder.add_conditional_edges( |
| 54 | + "call_model", |
| 55 | + tools_condition, |
| 56 | + ) |
| 57 | + builder.add_edge("tools", "call_model") |
| 58 | + graph = builder.compile() |
| 59 | + return await graph.ainvoke({"messages": query}) |
| 60 | + |
| 61 | + |
| 62 | +@app.command() |
| 63 | +def chat( |
| 64 | + query: str = typer.Option( |
| 65 | + "What's (3 + 5) x 12?", |
| 66 | + "--query", |
| 67 | + "-q", |
| 68 | + help="Input query to the chatbot", |
| 69 | + ), |
| 70 | + verbose: bool = typer.Option( |
| 71 | + False, |
| 72 | + "--verbose", |
| 73 | + "-v", |
| 74 | + help="Enable verbose output", |
| 75 | + ), |
| 76 | +): |
| 77 | + set_verbose_logging(verbose) |
| 78 | + logger.info("Running...") |
| 79 | + logger.info(f"Query: {query}") |
| 80 | + response = asyncio.run(run_agent(query=query)) |
| 81 | + for k, v in response.items(): |
| 82 | + logger.info(f"{k}: {v}") |
| 83 | + logger.info(response.get("messages")[-1].content) |
| 84 | + |
| 85 | + |
| 86 | +if __name__ == "__main__": |
| 87 | + load_dotenv( |
| 88 | + override=True, |
| 89 | + verbose=True, |
| 90 | + ) |
| 91 | + app() |
0 commit comments