Skip to content

Commit 5bd2354

Browse files
authored
Merge pull request #38945 from Sansar146/updating-broken-link-blog-article-from-2015
Fix links in blog article
2 parents 6624cf6 + 5114b8d commit 5bd2354

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

content/en/blog/_posts/2015-04-00-Borg-Predecessor-To-Kubernetes.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -16,23 +16,23 @@ To give you a flavor, here are four Kubernetes features that came from our exper
1616

1717

1818

19-
1) [Pods](https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/pods.md). A pod is the unit of scheduling in Kubernetes. It is a resource envelope in which one or more containers run. Containers that are part of the same pod are guaranteed to be scheduled together onto the same machine, and can share state via local volumes.
19+
1) [Pods](/docs/concepts/workloads/pods/). A pod is the unit of scheduling in Kubernetes. It is a resource envelope in which one or more containers run. Containers that are part of the same pod are guaranteed to be scheduled together onto the same machine, and can share state via local volumes.
2020

2121

2222

2323
Borg has a similar abstraction, called an alloc (short for “resource allocation”). Popular uses of allocs in Borg include running a web server that generates logs alongside a lightweight log collection process that ships the log to a cluster filesystem (not unlike fluentd or logstash); running a web server that serves data from a disk directory that is populated by a process that reads data from a cluster filesystem and prepares/stages it for the web server (not unlike a Content Management System); and running user-defined processing functions alongside a storage shard. Pods not only support these use cases, but they also provide an environment similar to running multiple processes in a single VM -- Kubernetes users can deploy multiple co-located, cooperating processes in a pod without having to give up the simplicity of a one-application-per-container deployment model.
2424

2525

2626

27-
2) [Services](https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md). Although Borg’s primary role is to manage the lifecycles of tasks and machines, the applications that run on Borg benefit from many other cluster services, including naming and load balancing. Kubernetes supports naming and load balancing using the service abstraction: a service has a name and maps to a dynamic set of pods defined by a label selector (see next section). Any container in the cluster can connect to the service using the service name. Under the covers, Kubernetes automatically load-balances connections to the service among the pods that match the label selector, and keeps track of where the pods are running as they get rescheduled over time due to failures.
27+
2) [Services](/docs/concepts/services-networking/service/). Although Borg’s primary role is to manage the lifecycles of tasks and machines, the applications that run on Borg benefit from many other cluster services, including naming and load balancing. Kubernetes supports naming and load balancing using the service abstraction: a service has a name and maps to a dynamic set of pods defined by a label selector (see next section). Any container in the cluster can connect to the service using the service name. Under the covers, Kubernetes automatically load-balances connections to the service among the pods that match the label selector, and keeps track of where the pods are running as they get rescheduled over time due to failures.
2828

2929

3030

31-
3) [Labels](https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/labels.md). A container in Borg is usually one replica in a collection of identical or nearly identical containers that correspond to one tier of an Internet service (e.g. the front-ends for Google Maps) or to the workers of a batch job (e.g. a MapReduce). The collection is called a Job, and each replica is called a Task. While the Job is a very useful abstraction, it can be limiting. For example, users often want to manage their entire service (composed of many Jobs) as a single entity, or to uniformly manage several related instances of their service, for example separate canary and stable release tracks. At the other end of the spectrum, users frequently want to reason about and control subsets of tasks within a Job -- the most common example is during rolling updates, when different subsets of the Job need to have different configurations.
31+
3) [Labels](/docs/concepts/overview/working-with-objects/labels/). A container in Borg is usually one replica in a collection of identical or nearly identical containers that correspond to one tier of an Internet service (e.g. the front-ends for Google Maps) or to the workers of a batch job (e.g. a MapReduce). The collection is called a Job, and each replica is called a Task. While the Job is a very useful abstraction, it can be limiting. For example, users often want to manage their entire service (composed of many Jobs) as a single entity, or to uniformly manage several related instances of their service, for example separate canary and stable release tracks. At the other end of the spectrum, users frequently want to reason about and control subsets of tasks within a Job -- the most common example is during rolling updates, when different subsets of the Job need to have different configurations.
3232

3333

3434

35-
Kubernetes supports more flexible collections than Borg by organizing pods using labels, which are arbitrary key/value pairs that users attach to pods (and in fact to any object in the system). Users can create groupings equivalent to Borg Jobs by using a “job:\<jobname\>” label on their pods, but they can also use additional labels to tag the service name, service instance (production, staging, test), and in general, any subset of their pods. A label query (called a “label selector”) is used to select which set of pods an operation should be applied to. Taken together, labels and [replication controllers](https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/replication-controller.md) allow for very flexible update semantics, as well as for operations that span the equivalent of Borg Jobs.
35+
Kubernetes supports more flexible collections than Borg by organizing pods using labels, which are arbitrary key/value pairs that users attach to pods (and in fact to any object in the system). Users can create groupings equivalent to Borg Jobs by using a “job:\<jobname\>” label on their pods, but they can also use additional labels to tag the service name, service instance (production, staging, test), and in general, any subset of their pods. A label query (called a “label selector”) is used to select which set of pods an operation should be applied to. Taken together, labels and [replication controllers](/docs/concepts/workloads/controllers/replicationcontroller/) allow for very flexible update semantics, as well as for operations that span the equivalent of Borg Jobs.
3636

3737

3838

0 commit comments

Comments
 (0)