|
| 1 | +--- |
| 2 | +layout: blog |
| 3 | +title: "Kubernetes 1.27: StatefulSet 启动序号简化了迁移" |
| 4 | +date: 2023-04-28 |
| 5 | +slug: statefulset-start-ordinal |
| 6 | +--- |
| 7 | + |
| 8 | +<!-- |
| 9 | +layout: blog |
| 10 | +title: "Kubernetes 1.27: StatefulSet Start Ordinal Simplifies Migration" |
| 11 | +date: 2023-04-28 |
| 12 | +slug: statefulset-start-ordinal |
| 13 | +--> |
| 14 | + |
| 15 | +<!-- |
| 16 | +**Author**: Peter Schuurman (Google) |
| 17 | +--> |
| 18 | +**作者:** Peter Schuurman (Google) |
| 19 | + |
| 20 | +**译者:** Xin Li (DaoCloud) |
| 21 | + |
| 22 | +<!-- |
| 23 | +Kubernetes v1.26 introduced a new, alpha-level feature for |
| 24 | +[StatefulSets](/docs/concepts/workloads/controllers/statefulset/) that controls |
| 25 | +the ordinal numbering of Pod replicas. As of Kubernetes v1.27, this feature is |
| 26 | +now beta. Ordinals can start from arbitrary |
| 27 | +non-negative numbers. This blog post will discuss how this feature can be |
| 28 | +used. |
| 29 | +--> |
| 30 | +Kubernetes v1.26 为 [StatefulSet](/zh-cn/docs/concepts/workloads/controllers/statefulset/) |
| 31 | +引入了一个新的 Alpha 级别特性,可以控制 Pod 副本的序号。 |
| 32 | +从 Kubernetes v1.27 开始,此特性进级到 Beta 阶段。序数可以从任意非负数开始, |
| 33 | +这篇博文将讨论如何使用此功能。 |
| 34 | + |
| 35 | +<!-- |
| 36 | +## Background |
| 37 | +
|
| 38 | +StatefulSets ordinals provide sequential identities for pod replicas. When using |
| 39 | +[`OrderedReady` Pod management](/docs/tutorials/stateful-application/basic-stateful-set/#orderedready-pod-management) |
| 40 | +Pods are created from ordinal index `0` up to `N-1`. |
| 41 | +--> |
| 42 | +## 背景 |
| 43 | + |
| 44 | +StatefulSet 序号为 Pod 副本提供顺序标识。当使用 |
| 45 | +[`OrderedReady` Pod 管理策略](/docs/tutorials/stateful-application/basic-stateful-set/#orderedready-pod-management)时, |
| 46 | +Pod 是从序号索引 `0` 到 `N-1` 顺序创建的。 |
| 47 | + |
| 48 | +<!-- |
| 49 | +With Kubernetes today, orchestrating a StatefulSet migration across clusters is |
| 50 | +challenging. Backup and restore solutions exist, but these require the |
| 51 | +application to be scaled down to zero replicas prior to migration. In today's |
| 52 | +fully connected world, even planned application downtime may not allow you to |
| 53 | +meet your business goals. You could use |
| 54 | +[Cascading Delete](/docs/tutorials/stateful-application/basic-stateful-set/#cascading-delete) |
| 55 | +or |
| 56 | +[On Delete](/docs/tutorials/stateful-application/basic-stateful-set/#on-delete) |
| 57 | +to migrate individual pods, however this is error prone and tedious to manage. |
| 58 | +You lose the self-healing benefit of the StatefulSet controller when your Pods |
| 59 | +fail or are evicted. |
| 60 | +--> |
| 61 | +如今使用 Kubernetes 跨集群编排 StatefulSet 迁移具有挑战性。 |
| 62 | +虽然存在备份和恢复解决方案,但这些解决方案需要在迁移之前将应用程序的副本数缩为 0。 |
| 63 | +在当今这个完全互联的世界中,即使是计划内的应用停机可能也无法实现你的业务目标。 |
| 64 | + |
| 65 | +你可以使用[级联删除](/zh-cn/docs/tutorials/stateful-application/basic-stateful-set/#cascading-delete)或 |
| 66 | +[OnDelete 策略](/zh-cn/docs/tutorials/stateful-application/basic-stateful-set/#on-delete)来迁移单个 Pod, |
| 67 | +但是这很容易出错并且管理起来很乏味。 |
| 68 | +当你的 Pod 出现故障或被逐出时,你将失去 StatefulSet 控制器的自我修复优势。 |
| 69 | + |
| 70 | +<!-- |
| 71 | +Kubernetes v1.26 enables a StatefulSet to be responsible for a range of ordinals |
| 72 | +within a range {0..N-1} (the ordinals 0, 1, ... up to N-1). |
| 73 | +With it, you can scale down a range |
| 74 | +{0..k-1} in a source cluster, and scale up the complementary range {k..N-1} |
| 75 | +in a destination cluster, while maintaining application availability. This |
| 76 | +enables you to retain *at most one* semantics (meaning there is at most one Pod |
| 77 | +with a given identity running in a StatefulSet) and |
| 78 | +[Rolling Update](/docs/tutorials/stateful-application/basic-stateful-set/#rolling-update) |
| 79 | +behavior when orchestrating a migration across clusters. |
| 80 | +--> |
| 81 | +Kubernetes v1.26 使 StatefulSet 能够负责 {0..N-1} 范围内的一系列序数(序数 0、1、... 直到 N-1)。 |
| 82 | +有了它,你可以缩小源集群中的范围 {0..k-1},并扩大目标集群中的互补范围 {k..N-1},同时保证应用程序可用性。 |
| 83 | +这使你在编排跨集群迁移时保留**至多一个**语义(意味着最多有一个具有给定身份的 |
| 84 | +Pod 在 StatefulSet 中运行)和[滚动更新](/zh-cn/docs/tutorials/stateful-application/basic-stateful-set/#rolling-update)行为。 |
| 85 | + |
| 86 | +<!-- |
| 87 | +## Why would I want to use this feature? |
| 88 | +
|
| 89 | +Say you're running your StatefulSet in one cluster, and need to migrate it out |
| 90 | +to a different cluster. There are many reasons why you would need to do this: |
| 91 | + * **Scalability**: Your StatefulSet has scaled too large for your cluster, and |
| 92 | + has started to disrupt the quality of service for other workloads in your |
| 93 | + cluster. |
| 94 | + * **Isolation**: You're running a StatefulSet in a cluster that is accessed |
| 95 | + by multiple users, and namespace isolation isn't sufficient. |
| 96 | + * **Cluster Configuration**: You want to move your StatefulSet to a different |
| 97 | + cluster to use some environment that is not available on your current |
| 98 | + cluster. |
| 99 | + * **Control Plane Upgrades**: You want to move your StatefulSet to a cluster |
| 100 | + running an upgraded control plane, and can't handle the risk or downtime of |
| 101 | + in-place control plane upgrades. |
| 102 | +--> |
| 103 | +## 我为什么要使用此功能? |
| 104 | + |
| 105 | +假设你在一个集群中运行 StatefulSet,并且需要将其迁移到另一个集群。你需要这样做的原因有很多: |
| 106 | + |
| 107 | + * **可扩展性**:你的 StatefulSet 对于你的集群而言规模过大,并且已经开始破坏集群中其他工作负载的服务质量。 |
| 108 | + * **隔离性**:你在一个供多个用户访问的集群中运行 StatefulSet,而命名空间隔离是不够的。 |
| 109 | + * **集群配置**:你想将 StatefulSet 迁移到另一个集群,以使用在当前集群上不存在的某些环境。 |
| 110 | + * **控制平面升级**:你想将 StatefulSet 迁移到运行着较高版本控制平面, |
| 111 | + 并且无法处承担就地升级控制平面所产生的风险或预留停机时间。 |
| 112 | + |
| 113 | +<!-- |
| 114 | +## How do I use it? |
| 115 | +
|
| 116 | +Enable the `StatefulSetStartOrdinal` feature gate on a cluster, and create a |
| 117 | +StatefulSet with a customized `.spec.ordinals.start`. |
| 118 | +--> |
| 119 | +## 我该如何使用它? |
| 120 | + |
| 121 | +在集群上启用 `StatefulSetStartOrdinal` 特性门控,并使用自定义的 |
| 122 | +`.spec.ordinals.start` 创建一个 StatefulSet。 |
| 123 | + |
| 124 | +<!-- |
| 125 | +## Try it out |
| 126 | +
|
| 127 | +In this demo, I'll use the new mechanism to migrate a |
| 128 | +StatefulSet from one Kubernetes cluster to another. The |
| 129 | +[redis-cluster](https://github.com/bitnami/charts/tree/main/bitnami/redis-cluster) |
| 130 | +Bitnami Helm chart will be used to install Redis. |
| 131 | +--> |
| 132 | +## 试试看吧 |
| 133 | + |
| 134 | +在此演示中,我将使用新机制将 StatefulSet 从一个 Kubernetes 集群迁移到另一个。 |
| 135 | +[redis-cluster](https://github.com/bitnami/charts/tree/main/bitnami/redis-cluster) |
| 136 | +Bitnami Helm chart 将用于安装 Redis。 |
| 137 | + |
| 138 | +<!-- |
| 139 | +Tools Required: |
| 140 | + * [yq](https://github.com/mikefarah/yq) |
| 141 | + * [helm](https://helm.sh/docs/helm/helm_install/) |
| 142 | +--> |
| 143 | +所需工具: |
| 144 | + |
| 145 | + * [yq](https://github.com/mikefarah/yq) |
| 146 | + * [helm](https://helm.sh/docs/helm/helm_install/) |
| 147 | + |
| 148 | +<!-- |
| 149 | +### Pre-requisites {#demo-pre-requisites} |
| 150 | +
|
| 151 | +To do this, I need two Kubernetes clusters that can both access common |
| 152 | +networking and storage; I've named my clusters `source` and `destination`. |
| 153 | +Specifically, I need: |
| 154 | +--> |
| 155 | +### 先决条件 {#demo-pre-requisites} |
| 156 | + |
| 157 | +为此,我需要两个可以访问公共网络和存储的 Kubernetes 集群; |
| 158 | +我已将集群命名为 `source` 和 `destination`。具体来说,我需要: |
| 159 | + |
| 160 | +<!-- |
| 161 | +* The `StatefulSetStartOrdinal` feature gate enabled on both clusters. |
| 162 | +* Client configuration for `kubectl` that lets me access both clusters as an |
| 163 | + administrator. |
| 164 | +* The same `StorageClass` installed on both clusters, and set as the default |
| 165 | + StorageClass for both clusters. This `StorageClass` should provision |
| 166 | + underlying storage that is accessible from either or both clusters. |
| 167 | +* A flat network topology that allows for pods to send and receive packets to |
| 168 | + and from Pods in either clusters. If you are creating clusters on a cloud |
| 169 | + provider, this configuration may be called private cloud or private network. |
| 170 | +--> |
| 171 | +* 在两个集群上都启用 `StatefulSetStartOrdinal` 特性门控。 |
| 172 | +* `kubectl` 的客户端配置允许我以管理员身份访问这两个集群。 |
| 173 | +* 两个集群上都安装了相同的 `StorageClass`,并设置为两个集群的默认 `StorageClass`。 |
| 174 | + 这个 `StorageClass` 应该提供可从一个或两个集群访问的底层存储。 |
| 175 | +* 一种扁平的网络拓扑,允许 Pod 向任一集群中的 Pod 发送数据包和从中接收数据包。 |
| 176 | + 如果你在云提供商上创建集群,则此配置可能被称为私有云或私有网络。 |
| 177 | + |
| 178 | +<!-- |
| 179 | +1. Create a demo namespace on both clusters: |
| 180 | +--> |
| 181 | +1. 在两个集群上创建一个用于演示的命名空间: |
| 182 | + |
| 183 | + ``` |
| 184 | + kubectl create ns kep-3335 |
| 185 | + ``` |
| 186 | + |
| 187 | +<!-- |
| 188 | +2. Deploy a Redis cluster with six replicas in the source cluster: |
| 189 | +--> |
| 190 | +2. 在 `source` 集群中部署一个有六个副本的 Redis 集群: |
| 191 | + |
| 192 | + ``` |
| 193 | + helm repo add bitnami https://charts.bitnami.com/bitnami |
| 194 | + helm install redis --namespace kep-3335 \ |
| 195 | + bitnami/redis-cluster \ |
| 196 | + --set persistence.size=1Gi \ |
| 197 | + --set cluster.nodes=6 |
| 198 | + ``` |
| 199 | + |
| 200 | +<!-- |
| 201 | +3. Check the replication status in the source cluster: |
| 202 | +--> |
| 203 | +3. 检查 `source` 集群中的副本状态: |
| 204 | + |
| 205 | + ``` |
| 206 | + kubectl exec -it redis-redis-cluster-0 -- /bin/bash -c \ |
| 207 | + "redis-cli -c -h redis-redis-cluster -a $(kubectl get secret redis-redis-cluster -o jsonpath="{.data.redis-password}" | base64 -d) CLUSTER NODES;" |
| 208 | + ``` |
| 209 | + |
| 210 | + ``` |
| 211 | + 2ce30362c188aabc06f3eee5d92892d95b1da5c3 10.104.0.14:6379@16379 myself,master - 0 1669764411000 3 connected 10923-16383 |
| 212 | + 7743661f60b6b17b5c71d083260419588b4f2451 10.104.0.16:6379@16379 slave 2ce30362c188aabc06f3eee5d92892d95b1da5c3 0 1669764410000 3 connected |
| 213 | + 961f35e37c4eea507cfe12f96e3bfd694b9c21d4 10.104.0.18:6379@16379 slave a8765caed08f3e185cef22bd09edf409dc2bcc61 0 1669764411000 1 connected |
| 214 | + 7136e37d8864db983f334b85d2b094be47c830e5 10.104.0.15:6379@16379 slave 2cff613d763b22c180cd40668da8e452edef3fc8 0 1669764412595 2 connected |
| 215 | + a8765caed08f3e185cef22bd09edf409dc2bcc61 10.104.0.19:6379@16379 master - 0 1669764411592 1 connected 0-5460 |
| 216 | + 2cff613d763b22c180cd40668da8e452edef3fc8 10.104.0.17:6379@16379 master - 0 1669764410000 2 connected 5461-10922 |
| 217 | + ``` |
| 218 | + |
| 219 | +<!-- |
| 220 | +4. Deploy a Redis cluster with zero replicas in the destination cluster: |
| 221 | +--> |
| 222 | +4. 在 `destination` 集群中部署一个零副本的 Redis 集群: |
| 223 | + |
| 224 | + ``` |
| 225 | + helm install redis --namespace kep-3335 \ |
| 226 | + bitnami/redis-cluster \ |
| 227 | + --set persistence.size=1Gi \ |
| 228 | + --set cluster.nodes=0 \ |
| 229 | + --set redis.extraEnvVars\[0\].name=REDIS_NODES,redis.extraEnvVars\[0\].value="redis-redis-cluster-headless.kep-3335.svc.cluster.local" \ |
| 230 | + --set existingSecret=redis-redis-cluster |
| 231 | + ``` |
| 232 | + |
| 233 | +<!-- |
| 234 | +5. Scale down the `redis-redis-cluster` StatefulSet in the source cluster by 1, |
| 235 | + to remove the replica `redis-redis-cluster-5`: |
| 236 | +--> |
| 237 | +5. 将源集群中的 `redis-redis-cluster` StatefulSet 副本数缩小 1, |
| 238 | + 以删除副本 `redis-redis-cluster-5`: |
| 239 | + |
| 240 | + ``` |
| 241 | + kubectl patch sts redis-redis-cluster -p '{"spec": {"replicas": 5}}' |
| 242 | + ``` |
| 243 | + |
| 244 | +<!-- |
| 245 | +6. Migrate dependencies from the source cluster to the destination cluster: |
| 246 | +
|
| 247 | + The following commands copy resources from `source` to `destionation`. Details |
| 248 | + that are not relevant in `destination` cluster are removed (eg: `uid`, |
| 249 | + `resourceVersion`, `status`). |
| 250 | +
|
| 251 | + **Steps for the source cluster** |
| 252 | +--> |
| 253 | +6. 将依赖从 `source` 集群迁移到 `destionation` 集群: |
| 254 | + 以下命令将依赖资源从 `source` 复制到 `destionation`,其中与 `destionation` |
| 255 | + 集群无关的详细信息已被删除(例如:`uid`、`resourceVersion`、`status`)。 |
| 256 | + |
| 257 | + <!-- |
| 258 | + Note: If using a `StorageClass` with `reclaimPolicy: Delete` configured, you |
| 259 | + should patch the PVs in `source` with `reclaimPolicy: Retain` prior to |
| 260 | + deletion to retain the underlying storage used in `destination`. See |
| 261 | + [Change the Reclaim Policy of a PersistentVolume](/docs/tasks/administer-cluster/change-pv-reclaim-policy/) |
| 262 | + for more details. |
| 263 | + --> |
| 264 | + |
| 265 | + 说明:如果使用配置了 `reclaimPolicy: Delete` 的 `StorageClass`, |
| 266 | + 你应该在删除之前使用 `reclaimPolicy: Retain` 修补 `source` 中的 PV, |
| 267 | + 以保留 `destination` 中使用的底层存储。 |
| 268 | + 有关详细信息,请参阅[更改 PersistentVolume](/zh-cn/docs/tasks/administer-cluster/change-pv-reclaim-policy/) |
| 269 | + 的回收策略。 |
| 270 | + |
| 271 | + ``` |
| 272 | + kubectl get pvc redis-data-redis-redis-cluster-5 -o yaml | yq 'del(.metadata.uid, .metadata.resourceVersion, .metadata.annotations, .metadata.finalizers, .status)' > /tmp/pvc-redis-data-redis-redis-cluster-5.yaml |
| 273 | + kubectl get pv $(yq '.spec.volumeName' /tmp/pvc-redis-data-redis-redis-cluster-5.yaml) -o yaml | yq 'del(.metadata.uid, .metadata.resourceVersion, .metadata.annotations, .metadata.finalizers, .spec.claimRef, .status)' > /tmp/pv-redis-data-redis-redis-cluster-5.yaml |
| 274 | + kubectl get secret redis-redis-cluster -o yaml | yq 'del(.metadata.uid, .metadata.resourceVersion)' > /tmp/secret-redis-redis-cluster.yaml |
| 275 | + ``` |
| 276 | + |
| 277 | + <!-- |
| 278 | + **Steps for the destination cluster** |
| 279 | +
|
| 280 | + Note: For the PV/PVC, this procedure only works if the underlying storage system |
| 281 | + that your PVs use can support being copied into `destination`. Storage |
| 282 | + that is associated with a specific node or topology may not be supported. |
| 283 | + Additionally, some storage systems may store addtional metadata about |
| 284 | + volumes outside of a PV object, and may require a more specialized |
| 285 | + sequence to import a volume. |
| 286 | + --> |
| 287 | + |
| 288 | + **`destination` 集群中的步骤** |
| 289 | + |
| 290 | + 说明:对于 PV/PVC,此过程仅在你的 PV 使用的底层存储系统支持复制到 `destination` |
| 291 | + 集群时才有效。可能不支持与特定节点或拓扑关联的存储。此外,某些存储系统可能会在 PV |
| 292 | + 对象之外存储有关卷的附加元数据,并且可能需要更专门的序列来导入卷。 |
| 293 | + |
| 294 | + ``` |
| 295 | + kubectl create -f /tmp/pv-redis-data-redis-redis-cluster-5.yaml |
| 296 | + kubectl create -f /tmp/pvc-redis-data-redis-redis-cluster-5.yaml |
| 297 | + kubectl create -f /tmp/secret-redis-redis-cluster.yaml |
| 298 | + ``` |
| 299 | + |
| 300 | +<!-- |
| 301 | +7. Scale up the `redis-redis-cluster` StatefulSet in the destination cluster by |
| 302 | + 1, with a start ordinal of 5: |
| 303 | +--> |
| 304 | +7. 将 `destination` 集群中的 `redis-redis-cluster` StatefulSet 扩容 1,起始序号为 5: |
| 305 | + |
| 306 | + ``` |
| 307 | + kubectl patch sts redis-redis-cluster -p '{"spec": {"ordinals": {"start": 5}, "replicas": 1}}' |
| 308 | + ``` |
| 309 | + |
| 310 | +<!-- |
| 311 | +8. Check the replication status in the destination cluster: |
| 312 | +--> |
| 313 | +8. 检查 `destination` 集群中的副本状态: |
| 314 | + |
| 315 | + ``` |
| 316 | + kubectl exec -it redis-redis-cluster-5 -- /bin/bash -c \ |
| 317 | + "redis-cli -c -h redis-redis-cluster -a $(kubectl get secret redis-redis-cluster -o jsonpath="{.data.redis-password}" | base64 -d) CLUSTER NODES;" |
| 318 | + ``` |
| 319 | + |
| 320 | + <!-- |
| 321 | + I should see that the new replica (labeled `myself`) has joined the Redis |
| 322 | + cluster (the IP address belongs to a different CIDR block than the |
| 323 | + replicas in the source cluster). |
| 324 | + --> |
| 325 | + 我应该看到新副本(标记为 `myself`)已加入 Redis 集群(IP |
| 326 | + 地址与 `source` 集群中的副本归属于不同的 CIDR 块)。 |
| 327 | + |
| 328 | + ``` |
| 329 | + 2cff613d763b22c180cd40668da8e452edef3fc8 10.104.0.17:6379@16379 master - 0 1669766684000 2 connected 5461-10922 |
| 330 | + 7136e37d8864db983f334b85d2b094be47c830e5 10.108.0.22:6379@16379 myself,slave 2cff613d763b22c180cd40668da8e452edef3fc8 0 1669766685609 2 connected |
| 331 | + 2ce30362c188aabc06f3eee5d92892d95b1da5c3 10.104.0.14:6379@16379 master - 0 1669766684000 3 connected 10923-16383 |
| 332 | + 961f35e37c4eea507cfe12f96e3bfd694b9c21d4 10.104.0.18:6379@16379 slave a8765caed08f3e185cef22bd09edf409dc2bcc61 0 1669766683600 1 connected |
| 333 | + a8765caed08f3e185cef22bd09edf409dc2bcc61 10.104.0.19:6379@16379 master - 0 1669766685000 1 connected 0-5460 |
| 334 | + 7743661f60b6b17b5c71d083260419588b4f2451 10.104.0.16:6379@16379 slave 2ce30362c188aabc06f3eee5d92892d95b1da5c3 0 1669766686613 3 connected |
| 335 | + ``` |
| 336 | + |
| 337 | +<!-- |
| 338 | +9. Repeat steps #5 to #7 for the remainder of the replicas, until the |
| 339 | + Redis StatefulSet in the source cluster is scaled to 0, and the Redis |
| 340 | + StatefulSet in the destination cluster is healthy with 6 total replicas. |
| 341 | +--> |
| 342 | +9. 对剩余的副本重复 #5 到 #7 的步骤,直到 `source` 集群中的 Redis StatefulSet 副本缩放为 0, |
| 343 | + 并且 `destination` 集群中的 Redis StatefulSet 健康,总共有 6 个副本。 |
| 344 | + |
| 345 | +<!-- |
| 346 | +## What's Next? |
| 347 | +
|
| 348 | +This feature provides a building block for a StatefulSet to be split up across |
| 349 | +clusters, but does not prescribe the mechanism as to how the StatefulSet should |
| 350 | +be migrated. Migration requires coordination of StatefulSet replicas, along with |
| 351 | +orchestration of the storage and network layer. This is dependent on the storage |
| 352 | +and connectivity requirements of the application installed by the StatefulSet. |
| 353 | +Additionally, many StatefulSets are managed by |
| 354 | +[operators](/docs/concepts/extend-kubernetes/operator/), which adds another |
| 355 | +layer of complexity to migration. |
| 356 | +--> |
| 357 | +## 接下来? |
| 358 | + |
| 359 | +此特性为跨集群拆分 StatefulSet 提供了一项基本支撑技术,但没有规定 StatefulSet 的迁移机制。 |
| 360 | +迁移需要对 StatefulSet 副本的协调,以及对存储和网络层的编排。这取决于使用 StatefulSet |
| 361 | +安装的应用程序的存储和网络连接要求。此外,许多 StatefulSet 由 |
| 362 | +[operator](/zh-cn/docs/concepts/extend-kubernetes/operator/) 管理,这也增加了额外的迁移复杂性。 |
| 363 | + |
| 364 | +<!-- |
| 365 | +If you're interested in building enhancements to make these processes easier, |
| 366 | +get involved with |
| 367 | +[SIG Multicluster](https://github.com/kubernetes/community/blob/master/sig-multicluster) |
| 368 | +to contribute! |
| 369 | +--> |
| 370 | +如果你有兴趣构建增强功能以简化这些过程,请参与 |
| 371 | +[SIG Multicluster](https://github.com/kubernetes/community/blob/master/sig-multicluster) |
| 372 | +做出贡献! |
| 373 | + |
| 374 | + |
0 commit comments